Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet. 2019;20:631–56.
Article
CAS
PubMed
Google Scholar
Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65:631–43.e4.
Article
CAS
PubMed
Google Scholar
Vieth B, Parekh S, Ziegenhain C, Enard W, Hellmann I. A systematic evaluation of single cell RNA-seq analysis pipelines. Nat Commun. 2019;10:4667.
Article
PubMed
PubMed Central
CAS
Google Scholar
Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 2018;13:599–604.
Article
CAS
PubMed
Google Scholar
Mereu E, Lafzi A, Moutinho C, Ziegenhain C, McCarthy DJ, Álvarez-Varela A, et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat Biotechnol. 2020;38:747–55.
Article
CAS
PubMed
Google Scholar
Ziegenhain C, Vieth B, Parekh S, Hellmann I, Enard W. Quantitative single-cell transcriptomics. Brief Funct Genomics. 2018;17:220–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. nature.com. 2011;9:72–4.
Article
PubMed
CAS
Google Scholar
Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012;2:666–73.
Article
CAS
PubMed
Google Scholar
Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I. The impact of amplification on differential expression analyses by RNA-seq. Sci Rep. 2016;6:25533.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hagemann-Jensen M, Ziegenhain C, Chen P, Ramsköld D, Hendriks G-J, Larsson AJM, et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat Biotechnol. 2020;38:708–14.
Article
CAS
PubMed
Google Scholar
Bagnoli JW, Ziegenhain C, Janjic A, Wange LE, Vieth B, Parekh S, et al. Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nat Commun. 2018;9:2937.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.
CAS
PubMed
PubMed Central
Google Scholar
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avila Cobos F, Alquicira-Hernandez J, Powell JE, Mestdagh P, De Preter K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat Commun. 2020;11:5650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Yang H, Zhang H, Liu Y, Shang H, Zhao H, et al. Decode-seq: a practical approach to improve differential gene expression analysis. Genome Biol. 2020;21:66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Zhou J, White KP. RNA-seq differential expression studies: more sequence or more replication? Bioinformatics. 2014;30:301–4.
Article
CAS
PubMed
Google Scholar
Lazic SE, Clarke-Williams CJ, Munafò MR. What exactly is “N” in cell culture and animal experiments? PLoS Biol. 2018;16:e2005282.
Article
PubMed
PubMed Central
CAS
Google Scholar
Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, et al. A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles. Cell. 2017;171:1437–52.e17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uzbas F, Opperer F, Sönmezer C, Shaposhnikov D, Sass S, Krendl C, et al. BART-Seq: cost-effective massively parallelized targeted sequencing for genomics, transcriptomics, and single-cell analysis. Genome Biol. 2019;20:155.
Article
PubMed
PubMed Central
CAS
Google Scholar
Replogle JM, Norman TM, Xu A, Hussmann JA, Chen J, Zachery Cogan J, et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat Biotechnol. 2020;38:954–61 Nature Publishing Group.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alpern D, Gardeux V, Russeil J, Mangeat B, Meireles-Filho ACA, Breysse R, et al. BRB-seq: ultra-affordable high-throughput transcriptomics enabled by bulk RNA barcoding and sequencing. Genome Biol. 2019;20:71.
Article
PubMed
PubMed Central
Google Scholar
Ebinger S, Özdemir EZ, Ziegenhain C, Tiedt S, Castro Alves C, Grunert M, et al. Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia. Cancer Cell. 2016;30:849–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schreck C, Istvánffy R, Ziegenhain C, Sippenauer T, Ruf F, Henkel L, et al. Niche WNT5A regulates the actin cytoskeleton during regeneration of hematopoietic stem cells. J Exp Med. 2017;214:165–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gegenfurtner FA, Zisis T, Al Danaf N, Schrimpf W, Kliesmete Z, Ziegenhain C, et al. Transcriptional effects of actin-binding compounds: the cytoplasm sets the tone. Cell Mol Life Sci. 2018;75:4539–55.
Article
CAS
PubMed
Google Scholar
Gegenfurtner FA, Jahn B, Wagner H, Ziegenhain C, Enard W, Geistlinger L, et al. Micropatterning as a tool to identify regulatory triggers and kinetics of actin-mediated endothelial mechanosensing. J Cell Sci. 2018;131. Available from:. https://doi.org/10.1242/jcs.212886.
Mueller S, Engleitner T, Maresch R, Zukowska M, Lange S, Kaltenbacher T, et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature. 2018;554:62–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang S, Crevenna AH, Ugur I, Marion A, Antes I, Kazmaier U, et al. Actin stabilizing compounds show specific biological effects due to their binding mode. Sci Rep. 2019;9:9731.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang S, Gegenfurtner FA, Crevenna AH, Ziegenhain C, Kliesmete Z, Enard W, et al. Chivosazole A modulates protein-protein interactions of actin. J Nat Prod. 2019;82:1961–70.
Article
CAS
PubMed
Google Scholar
Ebinger S, Zeller C, Carlet M, Senft D, Bagnoli JW, Liu W-H, et al. Plasticity in growth behavior of patients’ acute myeloid leukemia stem cells growing in mice. Haematologica. 2020;105:2855–60.
Article
PubMed
PubMed Central
Google Scholar
Garz A-K, Wolf S, Grath S, Gaidzik V, Habringer S, Vick B, et al. Azacitidine combined with the selective FLT3 kinase inhibitor crenolanib disrupts stromal protection and inhibits expansion of residual leukemia-initiating cells in FLT3-ITD AML with concurrent epigenetic mutations. Oncotarget. 2017;8:108738–59.
Article
PubMed
PubMed Central
Google Scholar
Mulholland CB, Nishiyama A, Ryan J, Nakamura R, Yiğit M, Glück IM, et al. Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals. Nat Commun. 2020;11:5972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Redondo Monte E, Wilding A, Leubolt G, Kerbs P, Bagnoli JW, Hartmann L, et al. ZBTB7A prevents RUNX1-RUNX1T1-dependent clonal expansion of human hematopoietic stem and progenitor cells. Oncogene. 2020;39:3195–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shami A, Atzler D, Bosmans LA, Winkels H, Meiler S, Lacy M, et al. Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans. Eur Heart J. 2020;41:2938–48.
Article
CAS
PubMed
Google Scholar
LaClair KD, Zhou Q, Michaelsen M, Wefers B, Brill MS, Janjic A, et al. Congenic expression of poly-GA but not poly-PR in mice triggers selective neuron loss and interferon responses found in C9orf72 ALS. Acta Neuropathol. 2020;140:121–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geuder J, Ohnuki M, Wange LE, Janjic A, Bagnoli JW, Müller S, et al. A non-invasive method to generate induced pluripotent stem cells from primate urine: Cold Spring Harbor Laboratory; 2020. p. 2020.08.12.247619. [cited 2021 Jan 21] Available from: https://www.biorxiv.org/content/10.1101/2020.08.12.247619v1
Google Scholar
Alterauge D, Bagnoli JW, Dahlström F, Bradford BM, Mabbott NA, Buch T, et al. Continued Bcl6 expression prevents the transdifferentiation of established Tfh cells into Th1 cells during acute viral infection. Cell Rep. 2020;33:108232.
Article
CAS
PubMed
Google Scholar
Kempf J, Knelles K, Hersbach BA, Petrik D, Riedemann T, Bednarova V, et al. Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the proneural factors Ascl1 and Neurogenin2. Cell Rep. 2021;36:109409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porquier A, Tisserant C, Salinas F, Glassl C, Wange L, Enard W, et al. Retrotransposons as pathogenicity factors of the plant pathogenic fungus Botrytis cinerea. Genome Biol. 2021;22:1–19 BioMed Central.
Article
CAS
Google Scholar
Carlet M, Völse K, Vergalli J, Becker M, Herold T, Arner A, et al. In vivo inducible reverse genetics in patients’ tumors to identify individual therapeutic targets. bioRxiv. 2020:2020.05.02.073577 [cited 2021 Sep 3]. Available from: https://www.biorxiv.org/content/10.1101/2020.05.02.073577v1.
Kempf JM, Weser S, Bartoschek MD, Metzeler KH, Vick B, Herold T, et al. Loss-of-function mutations in the histone methyltransferase EZH2 promote chemotherapy resistance in AML. Sci Rep. 2021;11:5838.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pekayvaz K, Leunig A, Kaiser R, Brambs S, Joppich M, Janjic A, et al. Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection: Cold Spring Harbor Laboratory; 2021. p. 2021.02.03.429351. [cited 2021 Feb 19]. Available from: https://www.biorxiv.org/content/10.1101/2021.02.03.429351v1
Google Scholar
Kliesmete Z, Wange LE, Vieth B, Esgleas M, Radmer J, Hülsmann M, et al. TRNP1 sequence, function and regulation co-evolve with cortical folding in mammals: Cold Spring Harbor Laboratory; 2021. p. 2021.02.05.429919. [cited 2021 Feb 19]. Available from: https://www.biorxiv.org/content/10.1101/2021.02.05.429919v2
Google Scholar
Soumillon M, Cacchiarelli D, Semrau S, van Oudenaarden A, Mikkelsen TS. Characterization of directed differentiation by high-throughput single-cell RNA-Seq: Cold Spring Harbor Laboratory; 2014. p. 003236. [cited 2021 Jan 21]. Available from: http://biorxiv.org/content/early/2014/03/05/003236.abstract
Google Scholar
Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I. zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs. Gigascience. 2018;7. Available from:. https://doi.org/10.1093/gigascience/giy059.
La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, et al. RNA velocity of single cells. Nature. 2018;560:494–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee S, Zhang AY, Su S, Ng AP, Holik AZ, Asselin-Labat M-L, et al. Covering all your bases: incorporating intron signal from RNA-seq data. NAR Genom Bioinform. 2020;2 [cited 2021 Jan 21]. Oxford Academic; Available from: https://academic.oup.com/nargab/article-pdf/2/3/lqaa073/34054975/lqaa073.pdf.
Xu J, Su Z, Hong H, Thierry-Mieg J, Thierry-Mieg D, Kreil DP, et al. Cross-platform ultradeep transcriptomic profiling of human reference RNA samples by RNA-Seq. Sci Data. 2014;1:140020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vieth B, Ziegenhain C, Parekh S, Enard W, Hellmann I. powsimR: power analysis for bulk and single cell RNA-seq experiments. Bioinformatics. 2017;33:3486–8.
Article
CAS
PubMed
Google Scholar
Oberacker P, Stepper P, Bond DM, Höhn S, Focken J, Meyer V, et al. Bio-On-Magnetic-Beads (BOMB): Open platform for high-throughput nucleic acid extraction and manipulation. PLoS Biol. 2019;17:e3000107.
Article
PubMed
PubMed Central
CAS
Google Scholar
Scholes AN, Lewis JA. Comparison of RNA isolation methods on RNA-Seq: implications for differential expression and meta-analyses. BMC Genomics. 2020;21:249.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fleming SJ, Marioni JC, Babadi M. CellBender remove-background: a deep generative model for unsupervised removal of background noise from scRNA-seq datasets. bioRxiv. 2019:791699 [cited 2020 Feb 17]. Available from: https://www.biorxiv.org/content/10.1101/791699v1.abstract.
Dixit A. Correcting chimeric crosstalk in single cell RNA-seq experiments. bioRxiv. 2021:093237 [cited 2021 Aug 26]. Available from: https://www.biorxiv.org/content/10.1101/093237v2.
Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol. 2016;34:942–9.
Article
CAS
PubMed
Google Scholar
Vick B, Rothenberg M, Sandhöfer N, Carlet M, Finkenzeller C, Krupka C, et al. An advanced preclinical mouse model for acute myeloid leukemia using patients’ cells of various genetic subgroups and in vivo bioluminescence imaging. PLoS One. 2015;10:e0120925.
Article
PubMed
PubMed Central
CAS
Google Scholar
Herold T, Jurinovic V, Batcha AMN, Bamopoulos SA, Rothenberg-Thurley M, Ksienzyk B, et al. A 29-gene and cytogenetic score for the prediction of resistance to induction treatment in acute myeloid leukemia. Haematologica. 2018;103:456–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Yu C, Daley TP, Wang F, Cao WS, Bhate S, et al. CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell. 2018;23:758–71.e8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Özdemir EZ, Ebinger S, Ziegenhain C, Enard W, Gires O, Schepers A, et al. Drug resistance and dormancy represent reversible characteristics in patients’ ALL cells growing in mice. Blood. 2016;128:602 American Society of Hematology.
Article
Google Scholar
Geuder J, Wange LE, Janjic A, Radmer J, Janssen P, Bagnoli JW, et al. A non-invasive method to generate induced pluripotent stem cells from primate urine. Sci Rep. 2021;11:3516.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sholder G, Lanz TA, Moccia R, Quan J, Aparicio-Prat E, Stanton R, et al. 3’Pool-seq: an optimized cost-efficient and scalable method of whole-transcriptome gene expression profiling. BMC Genomics. 2020;21:64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye C, Ho DJ, Neri M, Yang C, Kulkarni T, Randhawa R, et al. DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery. Nat Commun. 2018;9:4307.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pandey S, Takahama M, Gruenbaum A, Zewde M, Cheronis K, Chevrier N. A whole-tissue RNA-seq toolkit for organism-wide studies of gene expression with PME-seq. Nat Protoc. 2020;15:1459–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamitani M, Kashima M, Tezuka A, Nagano AJ. Lasy-Seq: a high-throughput library preparation method for RNA-Seq and its application in the analysis of plant responses to fluctuating temperatures. Sci Rep. 2019;9:7091.
Article
PubMed
PubMed Central
CAS
Google Scholar
Giraldez MD, Spengler RM, Etheridge A, Godoy PM, Barczak AJ, Srinivasan S, et al. Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nat Biotechnol. 2018;36:746–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong Y, Soumillon M, Wu J, Hansen J, Hu B, van Hasselt JGC, et al. A comparison of mRNA sequencing with random primed and 3’-directed libraries. Sci Rep. 2017;7:14626.
Article
PubMed
PubMed Central
CAS
Google Scholar
Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10:1096–8.
Article
CAS
PubMed
Google Scholar
Westermann AJ, Vogel J. Cross-species RNA-seq for deciphering host-microbe interactions. Nat Rev Genet. 2021;22:361–78.
Article
CAS
PubMed
Google Scholar
Trück J, Eugster A, Barennes P, Tipton CM, Luning Prak ET, Bagnara D, et al. Biological controls for standardization and interpretation of adaptive immune receptor repertoire profiling. Elife. 2021;10. Available from:. https://doi.org/10.7554/eLife.66274.
Buschmann T, Bystrykh LV. Levenshtein error-correcting barcodes for multiplexed DNA sequencing. BMC Bioinformatics. 2013;14:272.
Article
PubMed
PubMed Central
CAS
Google Scholar
Somervuo P, Koskinen P, Mei P, Holm L, Auvinen P, Paulin L. BARCOSEL: a tool for selecting an optimal barcode set for high-throughput sequencing. BMC Bioinformatics. 2018;19:257.
Article
PubMed
PubMed Central
CAS
Google Scholar
Andrews S. FastQC: A quality control analysis tool for high throughput sequencing data. Github; [cited 2021 Sep 14]. Available from: https://github.com/s-andrews/FastQC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
PubMed
Google Scholar
Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47:e47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Team R. RStudio: Integrated Development for R. Boston: RStudio, PBC; 2020. p. 2020.
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2016. Available from: https://www.r-project.org/
Google Scholar
Steffen Durinck, Wolfgang Huber. biomaRt. Bioconductor; 2017. Available from: https://bioconductor.org/packages/biomaRt
Google Scholar
Wickham H, Francois R, Henry L, Müller K. dplyr: a grammar of data manipulation. 2021. Available from: https://github.com/tidyverse/dplyr
Google Scholar
Wickham H, Henry L. Tidyr: Tidy messy data. R package version, vol. 1; 2020. p. 397.
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer; 2010.
Google Scholar
Wilke CO. cowplot: streamlined plot theme and plot annotations for “ggplot2.”; 2019.
Google Scholar
Clarke E, Sherrill-Mix S. ggbeeswarm: Categorical Scatter (Violin Point) Plots . 2017. Available from: https://CRAN.R-project.org/package=ggbeeswarm
Google Scholar
Constantin A-E, Patil I. ggsignif: R Package for Displaying Significance Brackets for “ggplot2”. PsyArxiv. 2021. Available from: https://psyarxiv.com/7awm6
Google Scholar
Xiao N. ggsci: Scientific Journal and Sci-Fi Themed Color Palettes for “ggplot2”. 2018. Available from: https://CRAN.R-project.org/package=ggsci
Google Scholar
Slowikowski K. ggrepel: Automatically position non-overlapping text labels with “ggplot2.”; 2018.
Google Scholar
Blighe K, Rana S, Lewis M. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. R package version; 2019.
Google Scholar
Kremer LPM. ggpointdensity: a cross between a 2D density plot and a scatter plot. 2019. Available from: https://CRAN.R-project.org/package=ggpointdensity
Google Scholar
Kolde R. Pheatmap: pretty heatmaps [Internet]. 2012. Available from: https://cran.r-project.org/web/packages/pheatmap/index.html
Google Scholar
Janjic A, Wange LE, Bagnoli JW, Geuder J, Nguyen P, Richter D, et al. Impact of RNA isolation methods for RNA-seq on gene expression. (HEK293T). E-MTAB-10142: Array Express; https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10142/. Accessed 6 Mar 2022.
Janjic A, Wange LE, Bagnoli JW, Geuder J, Nguyen P, Richter D, et al. Impact of RNA isolation methods for RNA-seq on gene expression (mouse striatal tissue). E-MTAB-10140: Array Express; https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10140/. Accessed 6 Mar 2022.
Janjic A, Wange LE, Bagnoli JW, Geuder J, Nguyen P, Richter D, et al. Impact of RNA isolation methods for RNA-seq on gene expression. (PBMCs). E-MTAB-10138: Array Express; https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10138/. Accessed 6 Mar 2022.
Janjic A, Wange LE, Bagnoli JW, Geuder J, Nguyen P, Richter D, et al. RNA-seq of human RNA contaminated with different amounts of mouse gDNA to quantify the impact of gDNA contamination in prime-seq. E-MTAB-10141: Array Express; https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10141/. Accessed 6 Mar 2022.
Janjic A, Wange LE, Bagnoli JW, Geuder J, Nguyen P, Richter D, et al. Deep RNA-seq of Universal Human Reference RNA mixed with external spike in molecules ERCC mix 1 using prime-seq. E-MTAB-10139: Array Express; https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10139/. Accessed 6 Mar 2022.
Janjic A, Wange LE, Bagnoli JW, Geuder J, Nguyen P, Richter D, et al. Bulk RNA-seq of archived acute myeloid leukemia (AML) samples propagated in a mouse Xenograft model over several passages. E-MTAB-10175: Array Express; https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10175/. Accessed 6 Mar 2022.
Janjic A, Wange LE, Bagnoli JW, Geuder J, Nguyen P, Richter D, et al. Bulk RNA-seq of human induced pluripotent stem cells (hIPSC) and neural progenitor cells (NPC) differentiated using Dual SMAD inhibition using the prime-seq method. E-MTAB-10133: Array Express; https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10133/. Accessed 6 Mar 2022.
Janjic A, Wange LE, Bagnoli JW, Geuder J, Nguyen P, Richter D, et al. Human-Mouse Mixture experiment to estimate that contribution of Barcode swapping. E-MTAB-11455: Array Express; https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-11455/. Accessed 6 Mar 2022.
Janjic A, Wange LE, Bagnoli JW, Geuder J, Nguyen P, Richter D, et al. Human-Mouse Mixture experiment to estimate that contribution of Barcode swapping. E-MTAB-11456: Array Express; https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-11456/. Accessed 6 Mar 2022.
SEQC/MAQC-III Consortium. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequence Quality Control consortium. PRJNA208369. BioProject; https://www.ncbi.nlm.nih.gov/bioproject/PRJNA208369. Accessed 18 Sept 2019.
Janjic A, Wange LE, Bagnoli JW, Geuder J, Nguyen P, Richter D, et al. prime-seq: prime-seq paper analysis: Github; 2022. https://github.com/Hellmann-Lab/prime-seq
Google Scholar
Janjic A, Wange LE, Bagnoli JW, Geuder J, Nguyen P, Richter D, et al. prime-seq: prime-seq paper analysis (zenodo): Zenodo; 2022. https://zenodo.org/record/5932624
Google Scholar