Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101(1):5–22. https://doi.org/10.1016/j.ajhg.2017.06.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pasaniuc B, Price AL. Dissecting the genetics of complex traits using summary association statistics. Nat Rev Genet. 2017;18(2):117–27.
Article
CAS
PubMed
Google Scholar
Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet. 2018;50(2):229.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grotzinger AD, Rhemtulla M, de Vlaming R, Ritchie SJ, Mallard TT, Hill WD, et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat Hum Behav. 2019;3(5):513–25. https://doi.org/10.1038/s41562-019-0566-x.
Article
PubMed
PubMed Central
Google Scholar
Zhu Z, Zheng Z, Zhang F, Wu Y, Trzaskowski M, Maier R, Robinson MR, McGrath JJ, Visscher PM, Wray NR, Yang J. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Commun. 2018;9(1):1–2.
Pickrell JK, Berisa T, Liu JZ, Segurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016;48(7):709.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cortes A, Albers PK, Dendrou CA, Fugger L, McVean G. Identifying cross-disease components of genetic risk across hospital data in the UK Biobank. Nat Genet. 2020;52(1):126–34.
Article
CAS
PubMed
Google Scholar
van Rheenen W, Peyrot WJ, Schork AJ, Lee SH, Wray NR. Genetic correlations of polygenic disease traits: from theory to practice. Nat Rev Genet. 2019;20(10):567–81.
Article
PubMed
CAS
Google Scholar
Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47(11):1236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi HWB, Mancuso N, Spendlove S, Pasaniuc B. Local genetic correlation gives insights into the shared genetic architecture of complex traits. Am J Hum Genet. 2017;101(5):737–51. https://doi.org/10.1016/j.ajhg.2017.09.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Q, Li B, Ou D, Erlendsdottir M, Powles RL, Jiang T, et al. A powerful approach to estimating annotation-stratified genetic covariance via GWAS summary statistics. Am J Hum Genet. 2017;101(6):939–64. https://doi.org/10.1016/j.ajhg.2017.11.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown BC, Ye CJ, Price AL, Zaitlen N, Network AGE. Transethnic genetic-correlation estimates from summary statistics. Am J Hum Genet. 2016;99(1):76–88. https://doi.org/10.1016/j.ajhg.2016.05.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics. 2012;28(19):2540–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo ZJ, Wang WJ, Cai TT, Li HZ. Optimal estimation of genetic relatedness in high-dimensional linear models. J Am Stat Assoc. 2019;114(525):358–69. https://doi.org/10.1080/01621459.2017.1407774.
Article
CAS
Google Scholar
Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J, Duncan L, et al. Analysis of shared heritability in common disorders of the brain. Science. 2018;360(6395):1313.
CAS
Google Scholar
Maier RM, Zhu ZH, Lee SH, Trzaskowski M, Ruderfer DM, Stahl EA, et al. Improving genetic prediction by leveraging genetic correlations among human diseases and traits. Nat Commun. 2018;9(1):989. https://doi.org/10.1038/s41467-017-02769-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Y, Lu Q, Liu W, Zhang Y, Li M, Zhao H. Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction. PLoS genetics. 2017;13(6):e1006836.
Zhao B, Zhu H. On genetic correlation estimation with summary statistics from genome-wide association studies. arXiv preprint arXiv:190301301; 2019.
Google Scholar
Nieuwboer HA, Pool R, Dolan CV, Boomsma DI, Nivard MG. GWIS: Genome-wide inferred statistics for functions of multiple phenotypes. Am J Hum Genet. 2016;99(4):917–27. https://doi.org/10.1016/j.ajhg.2016.07.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng YQ, Pan W. Conditional analysis of multiple quantitative traits based on marginal GWAS summary statistics. Genet Epidemiol. 2017;41(5):427–36. https://doi.org/10.1002/gepi.22046.
Article
PubMed
PubMed Central
Google Scholar
O'Connor LJ, Price AL. Distinguishing genetic correlation from causation across 52 diseases and complex traits (vol 50, pg 1728, 2018). Nat Genet. 2018;50(12):1753.
Article
CAS
PubMed
Google Scholar
Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42(7):565–9. https://doi.org/10.1038/ng.608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics C, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 2017;33(2):272–9.
Article
CAS
PubMed
Google Scholar
Guo H, Li JJ, Lu Q, Hou L. Detecting local genetic correlations with scan statistics. Nat Commun. 2021;12(1):1–3.
Iossifov I, O'Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216–U136. https://doi.org/10.1038/nature13908.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.
Article
CAS
Google Scholar
Berisa T, Pickrell JK. Approximately independent linkage disequilibrium blocks in human populations. Bioinformatics. 2016;32(2):283–5.
CAS
PubMed
Google Scholar
Stephens M. False discovery rates: a new deal. Biostatistics. 2017;18(2):275–94. https://doi.org/10.1093/biostatistics/kxw041.
Article
PubMed
Google Scholar
de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet. 2017;49(2):256–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dardani C, Riglin L, Leppert B, Sanderson E, Rai D, Howe L, Davey Smith G, Tilling K, Thapar A, Davies N, Anderson E. Is genetic liability to ADHD and ASD causally linked to educational attainment?. Int J Epidemiol. 2021.
Kowianski P, Lietzau G, Czuba E, Waskow M, Steliga A, Morys J. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol. 2018;38(3):579–93. https://doi.org/10.1007/s10571-017-0510-4.
Article
CAS
PubMed
Google Scholar
Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol Psychiatry. 2020;25(10):2251–74. https://doi.org/10.1038/s41380-019-0639-2.
Article
PubMed
Google Scholar
Yamada K, Nabeshima T. Brain-derived neurotrophic Factor/TrkB signaling in memory processes. J Pharmacol Sci. 2003;91(4):267–70. https://doi.org/10.1254/jphs.91.267.
Article
CAS
PubMed
Google Scholar
Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci. 2007;10(9):1089–93. https://doi.org/10.1038/nn1971.
Article
CAS
PubMed
Google Scholar
Sullivan PF, Keefe RS, Lange LA, Lange EM, Stroup TS, Lieberman J, et al. NCAM1 and neurocognition in schizophrenia. Biol Psychiatry. 2007;61(7):902–10. https://doi.org/10.1016/j.biopsych.2006.07.036.
Article
CAS
PubMed
Google Scholar
Yang BZ, Kranzler HR, Zhao H, Gruen JR, Luo X, Gelernter J. Haplotypic variants in DRD2, ANKK1, TTC12, and NCAM1 are associated with comorbid alcohol and drug dependence. Alcohol Clin Exp Res. 2008;32(12):2117–27. https://doi.org/10.1111/j.1530-0277.2008.00800.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bidwell LC, McGeary JE, Gray JC, Palmer RHC, Knopik VS, MacKillop J. NCAM1-TTC12-ANKK1-DRD2 variants and smoking motives as intermediate phenotypes for nicotine dependence. Psychopharmacology. 2015;232(7):1177–86.
Article
CAS
PubMed
Google Scholar
Cross-Disorder Group of the Psychiatric Genomics Consortium, Electronic address pmhe, Cross-Disorder Group of the Psychiatric Genomics C. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell. 2019;179(7):1469–82 e11. https://doi.org/10.1016/j.cell.2019.11.020.
Article
CAS
Google Scholar
Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nat Genet. 2019;51(3):414–30. https://doi.org/10.1038/s41588-019-0358-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics. 2013;45(12):1452–U206. https://doi.org/10.1038/ng.2802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang KL, Marcora E, Pimenova AA, Di Narzo AF, Kapoor M, Jin SC, et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease. Nat Neurosci. 2017;20(8):1052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51(3):431–44. https://doi.org/10.1038/s41588-019-0344-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiner DJ, Wigdor EM, Ripke S, Walters RK, Kosmicki JA, Grove J, et al. Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders. Nat Genet. 2017;49(7):978.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50(8):1112–21. https://doi.org/10.1038/s41588-018-0147-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreno-De-Luca A, Myers SM, Challman TD, Moreno-De-Luca D, Evans DW, Ledbetter DH. Developmental brain dysfunction: revival and expansion of old concepts based on new genetic evidence. Lancet Neurol. 2013;12(4):406–14. https://doi.org/10.1016/S1474-4422(13)70011-5.
Article
PubMed
PubMed Central
Google Scholar
De Brouwer APM, Abou Jamra R, Kortel N, Soyris C, Polla DL, Safra M, et al. Variants in PUS7 cause intellectual disability with speech delay, microcephaly, short stature, and aggressive behavior. Am J Hum Genet. 2018;103(6):1045–52. https://doi.org/10.1016/j.ajhg.2018.10.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
O'Donnell-Luria AH, Pais LS, Faundes V, Wood JC, Sveden A, Luria V, et al. Heterozygous variants in KMT2E cause a spectrum of neurodevelopmental disorders and epilepsy. Am J Hum Genet. 2019;104(6):1210–22. https://doi.org/10.1016/j.ajhg.2019.03.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An J-Y, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180(3):568–84. e23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muhleisen TW, Leber M, Schulze TG, Strohmaier J, Degenhardt F, Treutlein J, et al. Genome-wide association study reveals two new risk loci for bipolar disorder. Nat Commun. 2014;5:3339.
Article
PubMed
CAS
Google Scholar
Hou L, Bergen SE, Akula N, Song J, Hultman CM, Landen M, et al. Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Hum Mol Genet. 2016;25(15):3383–94. https://doi.org/10.1093/hmg/ddw181.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW, et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science. 2013;340(6139):1467–71. https://doi.org/10.1126/science.1235488.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang K, Wu Y, Shin J, Zheng Y, Siahpirani AF, Lin Y, Ni Z, Chen J, You J, Keles S, Wang D. Transcriptome-wide transmission disequilibrium analysis identifies novel risk genes for autism spectrum disorder. PLoS genetics. 2021;17(2):e1009309.
Pearl JR, Colantuoni C, Bergey DE, Funk CC, Shannon P, Basu B, et al. Genome-scale transcriptional regulatory network models of psychiatric and neurodegenerative disorders. Cell Syst. 2019;8(2):122.
Article
CAS
PubMed
Google Scholar
Chen C, Meng Q, Xia Y, Ding C, Wang L, Dai R, Cheng L, Gunaratne P, Gibbs RA, Min S, Coarfa C. The transcription factor POU3F2 regulates a gene coexpression network in brain tissue from patients with psychiatric disorders. Sci Transl Med. 2018;10(472).
Jin SC, Homsy J, Zaidi S, Lu QS, Morton S, DePalma SR, et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017;49(11):1593.
Article
CAS
PubMed
PubMed Central
Google Scholar
Homsy J, Zaidi S, Shen YF, Ware JS, Samocha KE, Karczewski KJ, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350(6265):1262–6. https://doi.org/10.1126/science.aac9396.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jansen A, Dieleman GC, Smit AB, Verhage M, Verhulst FC, Polderman TJC, et al. Gene-set analysis shows association between FMRP targets and autism spectrum disorder. Eur J Hum Genet. 2017;25(7):863–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ronemus M, Iossifov I, Levy D, Wigler M. The role of de novo mutations in the genetics of autism spectrum disorders. Nat Rev Genet. 2014;15(2):133–41. https://doi.org/10.1038/nrg3585.
Article
CAS
PubMed
Google Scholar
Steinberg J, Webber C. The roles of FMRP-regulated genes in autism spectrum disorder: single- and multiple-hit genetic etiologies. Am J Hum Genet. 2013;93(5):825–39. https://doi.org/10.1016/j.ajhg.2013.09.013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bishop SL, Hus V, Duncan A, Huerta M, Gotham K, Pickles A, et al. Subcategories of restricted and repetitive behaviors in children with autism spectrum disorders. J Autism Dev Disord. 2013;43(6):1287–97. https://doi.org/10.1007/s10803-012-1671-0.
Article
PubMed
PubMed Central
Google Scholar
Buja A, Volfovsky N, Krieger AM, Lord C, Lash AE, Wigler M, et al. Damaging de novo mutations diminish motor skills in children on the autism spectrum. Proc Natl Acad Sci U S A. 2018;115(8):E1859–E66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bishop SL, Farmer C, Bal V, Robinson EB, Willsey AJ, Werling DM, et al. Identification of developmental and behavioral markers associated with genetic abnormalities in autism spectrum disorder. Am J Psychiatry. 2017;174(6):576–85. https://doi.org/10.1176/appi.ajp.2017.16101115.
Article
PubMed
PubMed Central
Google Scholar
Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169(7):1177–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Werling DM, Brand H, An JY, Stone MR, Zhu L, Glessner JT, et al. An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat Genet. 2018;50(5):727–36. https://doi.org/10.1038/s41588-018-0107-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
An JY, Lin K, Zhu L, Werling DM, Dong S, Brand H, Wang HZ, Zhao X, Schwartz GB, Collins RL, Currall BB. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science. 2018;362(6420).
Zhou X. A unified framework for variance component estimation with summary statistics in genome-wide association studies. Ann Appl Stat. 2017;11(4):2027–51. https://doi.org/10.1214/17-AOAS1052.
Article
PubMed
PubMed Central
Google Scholar
Faber K, Kowalski BR. Critical evaluation of two F-tests for selecting the number of factors in abstract factor analysis. Anal Chim Acta. 1997;337(1):57–71.
Article
CAS
Google Scholar
Xie YL, Kalivas JH. Evaluation of principal component selection methods to form a global prediction model by principal component regression. Anal Chim Acta. 1997;348(1-3):19–27. https://doi.org/10.1016/S0003-2670(97)00035-4.
Article
CAS
Google Scholar
Sutter JM, Kalivas JH, Lang PM. Which principal components to utilize for principal component regression. J Chemometr. 1992;6(4):217–25.
Article
CAS
Google Scholar
Sun JG. A correlation principal component regression-analysis of NIR data. J Chemometr. 1995;9(1):21–9. https://doi.org/10.1002/cem.1180090104.
Article
CAS
Google Scholar
Depczynski U, Frost VJ, Molt K. Genetic algorithms applied to the selection of factors in principal component regression. Anal Chim Acta. 2000;420(2):217–27. https://doi.org/10.1016/S0003-2670(00)00893-X.
Article
CAS
Google Scholar
Malinowski ER. Determination of the number of factors and the experimental error in a data matrix. Anal Chem. 1977;49(4):612–7.
Article
CAS
Google Scholar
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. https://doi.org/10.1086/519795.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKay JD, Hung RJ, Han Y, Zong X, Carreras-Torres R, Christiani DC, et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet. 2017;49(7):1126–32. https://doi.org/10.1038/ng.3892.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feliciano P, Zhou X, Astrovskaya I, Turner TN, Wang T, Brueggeman L, et al. Exome sequencing of 457 autism families recruited online provides evidence for autism risk genes. NPJ Genom Med. 2019;4(1):19. https://doi.org/10.1038/s41525-019-0093-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48(10):1284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Z, Yi Y, Wu Y, Zhong X, Lin Y, Hohman TJ, Fletcher J, Lu Q. Fine-tuning polygenic risk scores with GWAS summary statistics. Genome Biol. 2019:810713.
Griffon A, Barbier Q, Dalino J, van Helden J, Spicuglia S, Ballester B. Integrative analysis of public ChIP-seq experiments reveals a complex multi-cell regulatory landscape. Nucleic Acids Res. 2015;43(4):e27. https://doi.org/10.1093/nar/gku1280.
Article
CAS
PubMed
Google Scholar
Pham TH, Benner C, Lichtinger M, Schwarzfischer L, Hu YH, Andreesen R, et al. Dynamic epigenetic enhancer signatures reveal key transcription factors associated with monocytic differentiation states. Blood. 2012;119(24):E161–E71.
Article
CAS
PubMed
Google Scholar
Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47(9):1091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, Torres JM, Torstenson ES, Shah KP, Garcia T, Edwards TL, Stahl EA. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun. 2018;9(1):1–20.
Stegle O, Parts L, Durbin R, Winn J. A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput Biol. 2010;6(5):e1000770. https://doi.org/10.1371/journal.pcbi.1000770.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garnier S, Truong V, Brocheton J, Zeller T, Rovital M, Wild PS, Ziegler A, Cardiogenics Consortium, Munzel T, Tiret L, Blankenberg S. Genome-wide haplotype analysis of cis expression quantitative trait loci in monocytes. PLoS genetics. 2013;9(1):e1003240.
McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28(5):495–501. https://doi.org/10.1038/nbt.1630.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu YM, Li M, Lu QS, Weng HY, Wang JW, Zekavat SM, et al. A statistical framework for cross-tissue transcriptome-wide association analysis. Nat Genet. 2019;51(3):568.
Article
CAS
PubMed
PubMed Central
Google Scholar
Consortium GT, Laboratory DA, Coordinating Center -Analysis Working G, Statistical Methods groups-Analysis Working G, Enhancing Gg, Fund NIHC, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–13.
Article
Google Scholar
Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348(6235):648–60. https://doi.org/10.1126/science.1262110.
Article
CAS
Google Scholar
Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, et al. A novel approach to high-quality postmortem tissue procurement: the GTEx project. Biopreserv Biobank. 2015;13(5):311–9. https://doi.org/10.1089/bio.2015.0032.
Article
PubMed
PubMed Central
Google Scholar
GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–30.
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan QN, Wang ZC, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–W7. https://doi.org/10.1093/nar/gkw377.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma’ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC bioinformatics. 2013;14(1):1–4.
Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005–D12. https://doi.org/10.1093/nar/gky1120.
Article
CAS
PubMed
Google Scholar
He X, Sanders SJ, Liu L, De Rubeis S, Lim ET, Sutcliffe JS, et al. Integrated model of de novo and inherited genetic variants yields greater power to identify risk genes. Plos Genet. 2013;9(8):e1003671. https://doi.org/10.1371/journal.pgen.1003671.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li M, Santpere G, Kawasawa YI, Evgrafov OV, Gulden FO, Pochareddy S, Sunkin SM, Li Z, Shin Y, Zhu Y, Sousa AM. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science. 2018;362(6420).
Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51(1):63–75. https://doi.org/10.1038/s41588-018-0269-7.
Article
CAS
PubMed
Google Scholar
Watson HJ, Yilmaz Z, Thornton LM, Hubel C, Coleman JRI, Gaspar HA, et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat Genet. 2019;51(8):1207–14. https://doi.org/10.1038/s41588-019-0439-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meier SM, Trontti K, Purves KL, Als TD, Grove J, Laine M, et al. Genetic variants associated with anxiety and stress-related disorders: a genome-wide association study and mouse-model study. JAMA Psychiatry. 2019;76(9):924–32. https://doi.org/10.1001/jamapsychiatry.2019.1119.
Article
PubMed
PubMed Central
Google Scholar
Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51(5):793–803. https://doi.org/10.1038/s41588-019-0397-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22(3):343–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arnold PD, Askland KD, Barlassina C, Bellodi L, Bienvenu OJ, Black D, et al. Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol Psychiatr. 2018;23(5):1181–8.
Article
CAS
Google Scholar
Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D, et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 2019;18(12):1091–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pardinas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50(3):381–9. https://doi.org/10.1038/s41588-018-0059-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okbay A, Baselmans BML, De Neve JE, Turley P, Nivard MG, Fontana MA, et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses (vol 48, pg 624, 2016). Nat Genet. 2016;48(12):1591.
Article
CAS
PubMed
Google Scholar
Liu MZ, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet. 2019;51(2):237.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones SE, Tyrrell J, Wood AR, Beaumont RN, Ruth KS, Tuke MA, et al. Genome-wide association analyses in 128,266 individuals identifies new morningness and sleep duration loci. Plos Genet. 2016;12(8):e1006125.
Article
PubMed
PubMed Central
CAS
Google Scholar
Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376–81.
Article
CAS
PubMed
Google Scholar
Michailidou K, Lindstrom S, Dennis J, Beesley J, Hui S, Kar S, et al. Association analysis identifies 65 new breast cancer risk loci. Nature. 2017;551(7678):92–4. https://doi.org/10.1038/nature24284.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scott RA, Scott LJ, Magi R, Marullo L, Gaulton KJ, Kaakinen M, et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes. 2017;66(11):2888–902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–9. https://doi.org/10.1093/hmg/ddy271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pattaro C, Teumer A, Gorski M, Chu AY, Li M, Mijatovic V, Garnaas M, Tin A, Sorice R, Li Y, Taliun D. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat Commun. 2016;7(1):1–9.
Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466(7307):707–13. https://doi.org/10.1038/nature09270.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malik R, Traylor M, Pulit SL, Bevan S, Hopewell JC, Holliday EG, et al. Low-frequency and common genetic variation in ischemic stroke: the METASTROKE collaboration. Neurology. 2016;86(13):1217–26. https://doi.org/10.1212/WNL.0000000000002528.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43(4):333–8. https://doi.org/10.1038/ng.784.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wellcome Trust Case Control Consortium. 2009. https://www.wtccc.org.uk.
UK Biobank. 2021. https://www.ukbiobank.ac.uk.
Simons Foundation Autism Research Initiative. Simons Foundation Powering Autism Research. 2019. https://www.sfari.org/resource/spark/.
ReMap. 2018. http://pedagogix-tagc.univ-mrs.fr/remap/.
European Genome-phenome Archive. The Cardiogenics study. EGAS00001000411. Transcriptome Analysis. 2013. https://ega-archive.org/studies/EGAS00001000411.
The PsychENCODE Consortium. Human Brain Development. 2018. http://development.psychencode.org/.
BrainSpan. Developmental transcriptome. 2013. http://brainspan.org/static/home.
Zhang Y. SUPERGNOVA. Github. 2021. https://github.com/qlu-lab/SUPERGNOVA.