Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. Plos Genet. 2012;8:e1002453.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glusman G, Cox HC, Roach JC. Whole-genome haplotyping approaches and genomic medicine. Genome Med. 2014;6:73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mantere T, Kersten S, Hoischen A. Long-read sequencing emerging in medical genetics. Front Genet. 2019;10:426.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tewhey R, Bansal V, Torkamani A, Topol EJ, Schork NJ. The importance of phase information for human genomics. Nat. Rev. Genet. 2011;12:215–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Y, et al. The haplotypes of various TNF related genes associated with scleritis in Chinese Han. Hum Genomics. 2020;14:46.
Sirén J, Garrison E, Novak AM, Paten B, Durbin R. Haplotype-aware graph indexes. Bioinformatics. 2019;36:400–7.
PubMed Central
Google Scholar
Sherman RM, Salzberg SL. Pan-genomics in the human genome era. Nat. Rev. Genet. 2020. https://doi.org/10.1038/s41576-020-0210-7.
Cretu Stancu M, et al. Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat Commun. 2017;8:1326.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gudmundsson S, et al. Revertant mosaicism repairs skin lesions in a patient with keratitis-ichthyosis-deafness syndrome by second-site mutations in connexin 26. Hum Mol Genet. 2017;26:1070–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee K, et al. Centromere 17 copy number gain reflects chromosomal instability in breast cancer. Sci Rep. 2019;9:1–11.
Google Scholar
Brinton J, et al. A haplotype-led approach to increase the precision of wheat breeding. Commun Biol. 2020;3:712.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dávila-Ramos S, et al. A review on viral metagenomics in extreme environments. Front Microbiol. 2019;10:2403.
Article
PubMed
PubMed Central
Google Scholar
Farci P, et al. Early changes in hepatitis C viral quasispecies during interferon therapy predict the therapeutic outcome. Proc Natl Acad Sci U S A. 2002;99:3081–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature. 2006;439:344–8.
Article
CAS
PubMed
Google Scholar
Chaisson MJP, et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat Commun. 2019;10:1784.
Article
PubMed
PubMed Central
CAS
Google Scholar
Scientists G. 10k C. of & Genome 10K Community of Scientists. Genome 10K: a proposal to obtain whole-genome sequence for 10 000 vertebrate species. J Hered. 2009;100:659–74.
Article
CAS
Google Scholar
Zook JM, et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat Biotechnol. 2014;32:246–51.
Article
CAS
PubMed
Google Scholar
Zook JM, et al. An open resource for accurately benchmarking small variant and reference calls. Nat Biotechnol. 2019;37:561–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagasaki M, et al. Construction of JRG (Japanese reference genome) with single-molecule real-time sequencing. Hum Genome Var. 2019;6:27.
Article
PubMed
PubMed Central
Google Scholar
Miga, K. H. et al. Telomere-to-telomere assembly of a complete human X chromosome. bioRxiv. 2019; 735928 doi:https://doi.org/10.1101/735928.
Shi L, et al. Long-read sequencing and de novo assembly of a Chinese genome. Nat Commun. 2016;7:12065.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lancia G, Bafna V, Istrail S, Lippert R, Schwartz R. SNPs problems, complexity, and algorithms. Algorithms — ESA. 2001;2001:182–93. https://doi.org/10.1007/3-540-44676-1_15.
Article
Google Scholar
Seo J-S, et al. De novo assembly and phasing of a Korean human genome. Nature. 2016;538:243–7.
Article
CAS
PubMed
Google Scholar
Wadapurkar RM, Vyas R. Computational analysis of next generation sequencing data and its applications in clinical oncology. Informatics Med Unlocked. 2018;11:75–82.
Article
Google Scholar
Snyder MW, Adey A, Kitzman JO, Shendure J. Haplotype-resolved genome sequencing: experimental methods and applications. Nat Rev Genet. 2015;16:344–58.
Article
CAS
PubMed
Google Scholar
Jarvie T. Next generation sequencing technologies. Drug Discov Today Technol. 2005;2:255–60.
Article
PubMed
Google Scholar
Masoudi-Nejad A, Narimani Z, Hosseinkhan N. Next Generation Sequencing and Sequence Assembly: Methodologies and Algorithms. Springer; 2013.
Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet. 2019;20:631–56.
Article
CAS
PubMed
Google Scholar
Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet. 2020. https://doi.org/10.1038/s41576-020-0236-x.
Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics. 2015;13:278–89.
Mikheyev AS, Tin MMY. A first look at the Oxford Nanopore MinION sequencer. Mol Ecol Resour. 2014;14:1097–102.
Article
CAS
PubMed
Google Scholar
Jain M, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018;36:338–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janitz K, Janitz M. Moving towards third-generation sequencing technologies. Tag-Based Next Gen Sequencing. 2012:323–36. https://doi.org/10.1002/9783527644582.ch20.
Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct determination of diploid genome sequences. Genome Res. 2017;27:757–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wenger AM, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37:1155–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marks P, et al. Resolving the full spectrum of human genome variation using linked-reads. Genome Res. 2019;29:635–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Selvaraj, S., R Dixon, J., Bansal, V. & Ren, B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat Biotechnol. 2013;31:1111–1118.
Li, M. et al. Towards a more accurate error model for BioNano optical maps. Bioinformatics Research and Applications 67–79 (2016) doi:https://doi.org/10.1007/978-3-319-38782-6_6.
Weissensteiner MH, et al. Combination of short-read, long-read, and optical mapping assemblies reveals large-scale tandem repeat arrays with population genetic implications. Genome Res. 2017;27:697–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beitel CW, et al. Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. PeerJ. 2014;2:e415.
Article
PubMed
PubMed Central
CAS
Google Scholar
Falconer E, et al. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution. Nat Methods. 2012;9:1107–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanders AD, Falconer E, Hills M, Spierings DCJ, Lansdorp PM. Single-cell template strand sequencing by Strand-seq enables the characterization of individual homologs. Nat Protoc. 2017;12:1151–76.
Article
CAS
PubMed
Google Scholar
Porubský D, et al. Direct chromosome-length haplotyping by single-cell sequencing. Genome Res. 2016;26:1565–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Patterson M, et al. WhatsHap: weighted haplotype assembly for future-generation sequencing reads. J Comput Biol. 2015;22:498–509.
Article
CAS
PubMed
Google Scholar
Edge P, Bafna V, Bansal V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies. Genome Res. 2017;27:801–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuleshov V. Probabilistic single-individual haplotyping. Bioinformatics. 2014;30:i379–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zaccaria S, Raphael BJ. Characterizing the allele- and haplotype-specific copy number landscape of cancer genomes at single-cell resolution with CHISEL. bioRxiv. 2019:837195. https://doi.org/10.1101/837195.
Satas G, Raphael BJ. Haplotype phasing in single-cell DNA-sequencing data. Bioinformatics. 2018;34:i211–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aganezov S, Raphael BJ. Reconstruction of clone- and haplotype-specific cancer genome karyotypes from bulk tumor samples. bioRxiv. 2019:560839. https://doi.org/10.1101/560839.
Berger E, Yorukoglu D, Peng J, Berger B. HapTree: a novel Bayesian framework for single individual polyplotyping using NGS data. Plos Comput Biol. 2014;10:e1003502.
Article
PubMed
PubMed Central
CAS
Google Scholar
Majidian, S., Kahaei, M. H. & de Ridder, D. Hap10: reconstructing accurate and long polyploid haplotypes using linked reads. doi:https://doi.org/10.1101/2020.01.08.899013.
Schrinner, S. D. et al. Haplotype threading: accurate polyploid phasing from long reads. bioRxiv 2020.02.04.933523 (2020) doi:https://doi.org/10.1101/2020.02.04.933523.
Xie M, Wu Q, Wang J, Jiang T. H-PoP and H-PoPG: heuristic partitioning algorithms for single individual haplotyping of polyploids. Bioinformatics. 2016;32:3735–44.
Article
CAS
PubMed
Google Scholar
Kronenberg ZN, et al. FALCON-Phase: Integrating PacBio and Hi-C data for phased diploid genomes. bioRxiv. 2018:327064. https://doi.org/10.1101/327064.
Garg S, et al. Chromosome-scale, haplotype-resolved assembly of human genomes. Nat Biotechnol. 2020. https://doi.org/10.1038/s41587-020-0711-0.
Porubsky D, et al. Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads. Nat Biotechnol. 2021;39:302–8.
Nurk S, et al. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 2020. https://doi.org/10.1101/gr.263566.120.
Heller, D., Vingron, M., Church, G., Li, H. & Garg, S. SDip: A novel graph-based approach to haplotype-aware assembly based structural variant calling in targeted segmental duplications sequencing. bioRxiv 2020.02.25.964445 (2020) doi:https://doi.org/10.1101/2020.02.25.964445.
Koren S, et al. De novo assembly of haplotype-resolved genomes with trio binning. Nat Biotechnol. 2018. https://doi.org/10.1038/nbt.4277.
Garg S, Aach J, Li H, Durbin R, Church G. A haplotype-aware de novo assembly of related individuals using pedigree sequence graph. Bioinformatics. 2019. https://doi.org/10.1093/bioinformatics/btz942.
Vollger MR, et al. Long-read sequence and assembly of segmental duplications. Nat Methods. 2019;16:88–94.
Article
CAS
PubMed
Google Scholar
Baaijens JA, Schönhuth A. Overlap graph-based generation of haplotigs for diploids and polyploids. Bioinformatics. 2019;35:4281–9.
Article
CAS
PubMed
Google Scholar
Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.
Article
CAS
PubMed
Google Scholar
Quince C, et al. DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biol. 2017;18:181.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bertrand D, et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes. Nat Biotechnol. 2019;37:937–44.
Article
CAS
PubMed
Google Scholar
Luo C, et al. ConStrains identifies microbial strains in metagenomic datasets. Nat Biotechnol. 2015;33:1045–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smillie CS, et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe. 2018;23:229–240.e5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicholls, S. M. et al. Recovery of gene haplotypes from a metagenome doi:https://doi.org/10.1101/223404.
Dilthey AT, Jain C, Koren S, Phillippy AM. Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps. Nat Commun. 2019;10:3066.
Press MO, et al. Hi-C deconvolution of a human gut microbiome yields high-quality draft genomes and reveals plasmid-genome interactions. https://doi.org/10.1101/198713.
DeMaere, M. Z. & Darling, A. E. bin3C: exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes (MAGs). doi:https://doi.org/10.1101/388355.
Loh P-R, et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet. 2016;48:1443–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Connell J, et al. Haplotype estimation for biobank-scale data sets. Nat Genet. 2016;48:817–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet. 2007;81:1084–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Browning SR, Browning BL. Haplotype phasing: existing methods and new developments. Nat Rev Genet. 2011;12:703–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan HC, Wang J, Potanina A, Quake SR. Whole-genome molecular haplotyping of single cells. Nat Biotechnol. 2011;29:51–7.
Article
CAS
PubMed
Google Scholar
Zhang X, Wu R, Wang Y, Yu J, Tang H. Unzipping haplotypes in diploid and polyploid genomes. Comput Struct Biotechnol J. 2020;18:66–72.
Article
CAS
PubMed
Google Scholar
Hoehe MR, et al. Multiple haplotype-resolved genomes reveal population patterns of gene and protein diplotypes. Nat Commun. 2014;5:5569.
Article
CAS
PubMed
Google Scholar
Porubsky D, et al. Dense and accurate whole-chromosome haplotyping of individual genomes. Nat Commun. 2017;8.
Lippert R, Schwartz R, Lancia G, Istrail S. Algorithmic strategies for the single nucleotide polymorphism haplotype assembly problem. Brief Bioinform. 2002;3:23–31.
Article
CAS
PubMed
Google Scholar
Garg, S. & Mömke, T. A QPTAS for Gapless MEC. in 26th Annual European Symposium on Algorithms (ESA 2018) 14 (Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018).
Klau GW, Marschall T. A guided tour to computational haplotyping, Unveiling Dynamics and Complexity; 2017. p. 50–63. https://doi.org/10.1007/978-3-319-58741-7_6.
Book
Google Scholar
Martin, M. et al. WhatsHap: fast and accurate read-based phasing doi:https://doi.org/10.1101/085050.
Bansal V. Integrating read-based and population-based phasing for dense and accurate haplotyping of individual genomes. Bioinformatics. 2019;35:i242–8.
CAS
PubMed
PubMed Central
Google Scholar
Garg S, Martin M, Marschall T. Read-based phasing of related individuals. Bioinformatics. 2016;32:i234–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zook JM, et al. A robust benchmark for detection of germline large deletions and insertions. Nat Biotechnol. 2020;38:1347–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berger E, Yorukoglu D, Berger B. HapTree-X: an integrative Bayesian framework for haplotype reconstruction from transcriptome and genome sequencing data. Res Comput Mol Biol. 2015;9029:28–9.
Article
PubMed
PubMed Central
Google Scholar
Das S, Vikalo H. SDhaP: haplotype assembly for diploids and polyploids via semi-definite programming. BMC Genomics. 2015;16:260.
Article
PubMed
PubMed Central
CAS
Google Scholar
Motazedi E, Finkers R, Maliepaard C, de Ridder D. Exploiting next-generation sequencing to solve the haplotyping puzzle in polyploids: a simulation study. Brief Bioinform. 2018;19:387–403.
PubMed
Google Scholar
Moeinzadeh M. De novo and haplotype assembly of polyploid genomes; 2019.
Google Scholar
Motazedi E, et al. TriPoly: haplotype estimation for polyploids using sequencing data of related individuals. Bioinformatics. 2018;34:3864–72.
CAS
PubMed
Google Scholar
Giani AM, Gallo GR, Gianfranceschi L, Formenti G. Long walk to genomics: history and current approaches to genome sequencing and assembly. Comput. Struct Biotechnol J. 2020;18:9–19.
Article
CAS
PubMed
Google Scholar
Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation doi:https://doi.org/10.1101/071282.
Chin C-S, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 2016;13:1050–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–6.
Article
CAS
PubMed
Google Scholar
Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2019. https://doi.org/10.1038/s41592-019-0669-3.
Shafin K, et al. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nat Biotechnol. 2020. https://doi.org/10.1038/s41587-020-0503-6.
Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range sequencing and mapping. Nat. Rev. Genet. 2018;19:329–46.
Article
CAS
PubMed
Google Scholar
Chin, C.-S. & Khalak, A. Human Genome Assembly in 100 Minutes. doi:https://doi.org/10.1101/705616.
Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Myers EW. The fragment assembly string graph. Bioinformatics. 2005;21(Suppl 2):ii79–85.
Article
CAS
PubMed
Google Scholar
Compeau PEC, Pevzner PA, Tesler G. How to apply de Bruijn graphs to genome assembly. Nat Biotechnol. 2011;29:987–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao H, et al. De novo assembly of a haplotype-resolved human genome. Nat Biotechnol. 2015;33:617–22.
Article
CAS
PubMed
Google Scholar
Gordon D, et al. Long-read sequence assembly of the gorilla genome. Science. 2016;352:aae0344.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou Q, et al. Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat Genet. 2020;52:1018–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Low WY, et al. Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity. Nat Commun. 2019;10:260.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ott A, et al. Linked read technology for assembling large complex and polyploid genomes. BMC Genomics. 2018;19:651.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sczyrba A, et al. Critical assessment of metagenome interpretation—a benchmark of metagenomics software. Nat Methods. 2017;14:1063–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
King DJ, et al. A systematic evaluation of high-throughput sequencing approaches to identify low-frequency single nucleotide variants in viral populations. Viruses. 2020;12.
Kolmogorov M, et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods. 2020;17:1103–10.
CAS
Google Scholar
Nicholls, S. M. et al. On the complexity of haplotyping a microbial community doi:https://doi.org/10.1101/2020.08.10.244848.
Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems. 2018;3.
Sangwan N, Xia F, Gilbert JA. Recovering complete and draft population genomes from metagenome datasets. Microbiome. 2016;4:8.
Article
PubMed
PubMed Central
Google Scholar
Olson ND, et al. Metagenomic assembly through the lens of validation: recent advances in assessing and improving the quality of genomes assembled from metagenomes. Brief Bioinform. 2019;20:1140–50.
Article
CAS
PubMed
Google Scholar
Ayling M, Clark MD, Leggett RM. New approaches for metagenome assembly with short reads. Brief Bioinform. 2020;21:584–94.
Article
CAS
PubMed
Google Scholar
Vollmers J, Wiegand S, Kaster A-K. Comparing and evaluating metagenome assembly tools from a microbiologist’s perspective - not only size matters! Plos One. 2017;12:e0169662.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cleary B, et al. Detection of low-abundance bacterial strains in metagenomic datasets by eigengenome partitioning. Nat Biotechnol. 2015;33:1053–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
Article
CAS
PubMed
Google Scholar
Nurk S, Meleshko D, Korobeynikov A, Pevzner P. A metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Rossum T, Ferretti P, Maistrenko OM, Bork P. Diversity within species: interpreting strains in microbiomes. Nat Rev Microbiol. 2020;18:491–506.
Article
PubMed
PubMed Central
CAS
Google Scholar
Olm, M. R. et al. InStrain enables population genomic analysis from metagenomic data and rigorous detection of identical microbial strains. bioRxiv 2020.01.22.915579 (2020) doi:https://doi.org/10.1101/2020.01.22.915579.
Integrative HMP. (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014;16:276–89.
Article
CAS
Google Scholar
Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.
Article
CAS
Google Scholar
Bankevich A, Pevzner PA. Joint analysis of long and short reads enables accurate estimates of microbiome complexity. Cell Syst. 2018;7:192–200.e3.
Article
CAS
PubMed
Google Scholar
Yaffe E, Relman DA. Tracking microbial evolution in the human gut using Hi-C reveals extensive horizontal gene transfer, persistence and adaptation. Nat Microbiol. 2020;5:343–53.
Article
CAS
PubMed
Google Scholar
Sulovari A, et al. Human-specific tandem repeat expansion and differential gene expression during primate evolution. Proc Natl Acad Sci U S A. 2019;116:23243–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharp AJ, et al. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet. 2005;77:78–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu R, et al. New insights into mammalian sex chromosome structure and evolution using high-quality sequences from bovine X and Y chromosomes. BMC Genomics. 2019;20:1000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deshpande N, Meller VH. Sex chromosome evolution: life, death and repetitive DNA. Fly. 2014;8:197–9.
Article
PubMed
Google Scholar
Miga KH, et al. Centromere reference models for human chromosomes X and Y satellite arrays. Genome Res. 2014;24:697–707.
Article
CAS
PubMed
PubMed Central
Google Scholar
Attimonelli M, Calabrese FM. Human nuclear mitochondrial sequences (NumtS). Hum Mitochondrial Genome. 2020:131–43. https://doi.org/10.1016/b978-0-12-819656-4.00006-1.
Helena Mangs A, Morris BJ. The human pseudoautosomal region (PAR): origin, function and future. Curr Genomics. 2007;8:129–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartley G, O’Neill RJ. Centromere repeats: hidden gems of the genome. Genes. 2019;10.
Warmerdam DO, Wolthuis RMF. Keeping ribosomal DNA intact: a repeating challenge. Chromosom Res. 2019;27:57–72.
Article
CAS
Google Scholar
Shay JW. Role of telomeres and telomerase in aging and cancer. Cancer Discov. 2016;6:584–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Willard HF, Waye JS. Chromosome-specific subsets of human alpha satellite DNA: analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat. J Mol Evol. 1987;25:207–14.
Article
CAS
PubMed
Google Scholar
Miga KH. Centromere studies in the era of ‘telomere-to-telomere’ genomics. Exp Cell Res. 2020;394:112127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bzikadze, A. V. & Pevzner, P. A. centroFlye: assembling centromeres with long error-prone reads. 2019; 772103 doi:https://doi.org/10.1101/772103.
Dvorkina T, Bzikadze AV, Pevzner PA. The string decomposition problem and its applications to centromere analysis and assembly. Bioinformatics. 2020;36:i93–i101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nir G, et al. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet. 2018;14:e1007872.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kaitoua A, Gulino A, Masseroli M, Pinoli P, Ceri S. Scalable genomic data management system on the cloud, 2017 International Conference on High Performance Computing & Simulation (HPCS); 2017. https://doi.org/10.1109/hpcs.2017.19.
Book
Google Scholar
Merelli I, Pérez-Sánchez H, Gesing S, D’Agostino D. Managing, analysing, and integrating big data in medical bioinformatics: open problems and future perspectives. Biomed Res Int. 2014;2014:134023.
PubMed
PubMed Central
Google Scholar
Ondov BD, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132.
Article
PubMed
PubMed Central
CAS
Google Scholar
Earl D, et al. Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res. 2011;21:2224–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradnam KR, et al. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. Gigascience. 2013;2:10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Salzberg SL, et al. GAGE: a critical evaluation of genome assemblies and assembly algorithms. Genome Res. 2012;22:557–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shumate A, et al. Assembly and annotation of an Ashkenazi human reference genome. Genome Biol. 2020;21:129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nielsen CB, Cantor M, Dubchak I, Gordon D, Wang T. Visualizing genomes: techniques and challenges. Nat Methods. 2010;7:S5–S15.
Article
CAS
PubMed
Google Scholar
Nusrat S, Harbig T, Gehlenborg N. Tasks, techniques, and tools for genomic data visualization. Comput Graph Forum. 2019;38:781–805.
Article
CAS
PubMed
PubMed Central
Google Scholar