Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol. 2017a; 35(9):833–44. https://doi.org/10.1038/nbt.3935.
Pell J, et al.Scaling metagenome sequence assembly with probabilistic De Bruijn graphs. PNAS. 2012; 109(33):13272–7. https://doi.org/10.1073/pnas.1121464109.
Article
CAS
Google Scholar
Laczny CC, Kiefer C, Galata V, Fehlmann T, Backes C, Keller A. Busybee web: metagenomic data analysis by bootstrapped supervised binning and annotation. Nucleic Acids Res. 2017:gkx348. https://doi.org/10.1093/nar/gkx348.
Lin H, Liao Y. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep. 2016; 6:24175.
Article
CAS
Google Scholar
Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, Hugenholtz P, Tyson GW. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017; 2(11):1533–42. https://doi.org/10.1038/s41564-017-0012-7.
Article
CAS
Google Scholar
Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci Data. 2018; 5:170203. https://doi.org/10.1038/sdata.2017.203.
Article
CAS
Google Scholar
Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, Liachko I, Snelling TJ, Dewhurst RJ, Walker AW, Roehe R, Watson M. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun. 2018;9(1). https://doi.org/10.1038/s41467-018-03317-6.
Delmont TO, Quince C Shaiber, Esen ÖC, Lee STM, Rappé MS, McLellan SL, Lücker S, Eren AM. Nitrogen-fixing populations of planctomycetes and proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol. 2018; 3(7):804–13. https://doi.org/10.1038/s41564-018-0176-9.
Article
CAS
Google Scholar
Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM, Amundson R, Thomas BC, Banfield JF. A new view of the tree of life. Nat Microbiol. 2016;1(5). https://doi.org/10.1038/nmicrobiol.2016.48.
Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, Beghini F, Manghi P, Tett A, Ghensi P, Collado MC, Rice BL, DuLong C, Morgan XC, Golden CD, Quince C, Huttenhower C, Segata N. Extensive unexplored human microbiome diversity revealed by over 150, 000 genomes from metagenomes spanning age, geography, and lifestyle. Cell. 2019; 176(3):649–62.e20. https://doi.org/10.1016/j.cell.2019.01.001.
Article
CAS
Google Scholar
Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I, Majda S, Fiedler J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jørgensen TS, Shapiro N, Blood PD, Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi R, Nagarajan N, Quince C, Meyer F, Balvočiūtė M, Hansen LH, Sørensen SJ, Chia BKH, Denis B, Froula JL, Wang Z, Egan R, Kang DD, Cook JJ, Deltel C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D, Wu Y-W, Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD, Lingner T, Lin H-H, Liao Y-C, Silva GGZ, Cuevas DA, Edwards RA, Saha S, Piro VC, Renard BY, Pop M, Klenk H-P, Göker M, Kyrpides NC, Woyke T, Vorholt JA, Schulze-Lefert P, Rubin EM, Darling AE, Rattei T, McHardy AC. Critical assessment of metagenome interpretation—a benchmark of metagenomics software. Nat Methods. 2017; 14(11):1063–71. https://doi.org/10.1038/nmeth.4458.
Article
CAS
Google Scholar
Awad S, Irber L, Brown CT. Evaluating metagenome assembly on a simple defined community with many strain variants. 2017. https://www.biorxiv.org/content/early/2017/07/03/155358.
Brown CT. Strain recovery from metagenomes. Nat Biotechnol. 2015; 33(10):1041–3. https://doi.org/10.1038/nbt.3375.
Article
CAS
Google Scholar
Brito IL, Alm EJ. Tracking strains in the microbiome: insights from metagenomics and models. Front Microbiol. 2016;7. https://doi.org/10.3389/fmicb.2016.00712.
Alneberg J, Karlsson CMG, Divne A-M, Bergin C, Homa F, Lindh MV, Hugerth LW, Ettema TJG, Bertilsson S, Andersson AF, Pinhassi J. Genomes from uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomes. Microbiome. 2018;6(1). https://doi.org/10.1186/s40168-018-0550-0.
Quince C, Delmont TO, Raguideau S, Alneberg J, Darling AE, Collins G, Eren AM. DESMAN: a new tool for de novo extraction of strains from metagenomes. Genome Biol. 2017b;18(1). https://doi.org/10.1186/s13059-017-1309-9.
Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 2016; 26(11):1612–25. https://doi.org/10.1101/gr.201863.115.
Article
CAS
Google Scholar
Garrison E. Graphical pangenomics. PhD thesis: Cambridge University; 2018. https://doi.org/10.5281/zenodo.1463032. As submitted, awaiting viva (defense) and further revision.
Onate FP, Chatelier EL, Almeida M, Cervino ACL, Gauthier F, Magoules F, Ehrlich SD, Pichaud M. MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics. 2018. https://doi.org/10.1093/bioinformatics/bty830.
Petersen JM, Kemper A, Gruber-Vodicka H, Cardini U, van der Geest M, Kleiner M, Bulgheresi S, Mußmann M, Herbold C, Seah BKB, Antony CP, Liu D, Belitz A, Weber M. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat Microbiol. 2016;2(1). https://doi.org/10.1038/nmicrobiol.2016.195.
Olekhnovich EI, Vasilyev AT, Ulyantsev VI, Kostryukova ES, Tyakht AV. MetaCherchant: analyzing genomic context of antibiotic resistance genes in gut microbiota. Bioinformatics. 2017; 34(3):434–44. https://doi.org/10.1093/bioinformatics/btx681.
Article
Google Scholar
Barnum TP, Figueroa IA, Carlström CI, Lucas LN, Engelbrektson AL, Coates JD. Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. ISME J. 2018; 12(6):1568–81. https://doi.org/10.1038/s41396-018-0081-5.
Article
CAS
Google Scholar
Brown CT, Moritz D, O’Brien MP, Reidl F, Sullivan BD. spacegraphcats, v1.0. 2018. doi:10.5281/zenodo.1478025.
Reidl F. Structural sparseness and complex networks. 2016. http://publications.rwth-aachen.de/record/565064. Aachen, Techn. Hochsch., Diss., 2015.
Karp RM. Reducibility among combinatorial problems. In: Complexity of computer computations. Springer: 1972. p. 85–103. https://doi.org/10.1007/978-1-4684-2001-2_9.
Chlebík, M, Chlebíková J. Approximation hardness of dominating set problems in bounded degree graphs. Inf Comput. 2008; 206(11):1264–75.
Article
Google Scholar
Downey RG, Fellows MR. Parameterized complexity: Springer Science & Business Media; 2012.
de Mendez PO, et al.Sparsity: graphs, structures, and algorithms, volume 28. 2012. https://doi.org/10.1007/978-3-642-27875-4.
Limasset A, Rizk G, Chikhi R, Peterlongo P. Fast and scalable minimal perfect hashing for massive key sets. CoRR. 017;abs/1702.03154. http://arxiv.org/abs/1702.03154.
Shakya M, Quince C, Campbell JH, Yang ZK, Schadt CW, Podar M. Comparative metagenomic and rrna microbial diversity characterization using archaeal and bacterial synthetic communities. Environ Microbiol. 2013a; 15(6):1882–99. ISSN 1462-2920. https://doi.org/10.1111/1462-2920.12086.
Li D, Luo R, Liu C-M, Leung C-M, Ting HF, Sadakane K, Yamashita H, Lam T-W. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by a dvanced methodologies and community practices. Methods. 2016; 102:3–11. https://doi.org/10.1016/j.ymeth.2016.02.020.
Article
CAS
Google Scholar
Seah BKB, Gruber-Vodicka HR. gbtools: interactive visualization of metagenome bins in r. Front Microbiol. 2015;6. https://doi.org/10.3389/fmicb.2015.01451.
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaspades: a new versatile metagenomic assembler. Genome Res. 2017; 27(5):824–34.
Article
CAS
Google Scholar
Sharon I, Kertesz M, Hug LA, Pushkarev D, Blauwkamp TA, Castelle CJ, Amirebrahimi M, Thomas BC, Burstein D, Tringe SG, Williams KH, Banfield JF. Accurate, multi-kb reads resolve complex populations and detect rare microorganisms. Genome Res. 2015; 25(4):534–43. https://doi.org/10.1101/gr.183012.114.
Article
CAS
Google Scholar
Hu P, Tom L, Singh A, Thomas BC, Baker BJ, Piceno YM, Andersen GL, Banfield JF. Genome-resolved metagenomic analysis reveals roles for candidate phyla and other microbial community members in biogeochemical transformations in oil reservoirs. mBio. 2016a;7(1). https://doi.org/10.1128/mbio.01669-15.
Steinegger M, Mirdita M, Soding J. Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold. 2018. https://doi.org/10.1101/386110.
Yang Y, Yooseph S. SPA: a short peptide assembler for metagenomic data. Nucleic Acids Res. 2013; 41(8):e91. https://doi.org/10.1093/nar/gkt118.
Article
CAS
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015; 25(7):1043–55. https://doi.org/10.1101/gr.186072.114.
Article
CAS
Google Scholar
Hu P, Tom L, Singh A, Thomas BC, Baker BJ, Piceno YM, Andersen GL, Banfield JF. Genome-resolved metagenomic analysis reveals roles for candidate phyla and other microbial community members in biogeochemical transformations in oil reservoirs. MBio. 2016b; 7(1):01669–15. https://doi.org/10.1128/mBio.01669-15.
Demaine ED, Reidl F, Rossmanith P, Villaamil FS, Sik-dar S, Sullivan BD. Structural sparsity of complex networks: Bounded expansion in random models and realworld graphs. J Comput Syst Sci. 2019; 105:199–241. https://doi.org/10.1016/j.jcss.2019.05.004.
Article
Google Scholar
Nadara W, Pilipczuk M, Rabinovich R, Reidl F, Siebertz S. Empirical evaluation of approximation algorithms for generalized graph coloring and uniform quasi-wideness In: D’Angelo G, editor. 17th International Symposium on Experimental Algorithms, SEA 2018, June 27-29 2018, L’Aquila, Italy, volume 103 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik: 2018. p. 14:1–16. https://doi.org/10.4230/LIPIcs.SEA.2018.14.
Marbouty M, Cournac A, Flot J-F, Marie-Nelly H, Mozziconacci J, Koszul R. Metagenomic chromosome conformation capture (meta3c) unveils the div ersity of chromosome organization in microorganisms. eLife. 2014;3. https://doi.org/10.7554/elife.03318.
Beitel CW, Froenicke L, Lang JM, Korf IF, Michelmore RW, Eisen JA, Darling AE. Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. PeerJ. 2014; 2:e415. https://doi.org/10.7717/peerj.415.
Article
Google Scholar
Shakya M, et al.Comparative metagenomic and rrna microbial diversity characterization using archaeal and bacterial synthetic communities. Environ Microbiol. 2013b; 15(6):1882–99. https://doi.org/10.1111/1462-2920.12086.
Zhang Q, Awad S, Brown CT. Crossing the streams: a framework for streaming analysis of short DNA sequencing reads. 2015. https://doi.org/10.7287/peerj.preprints.890v1.
Standage D, yari A, Cohen LJ, Crusoe MR, Head T, Irber L, Joslin SEK, Kingsley NB, Murray KD, Neches R, Scott C, Shean R, Steinbiss S, Sydney C, Brown CT. khmer release v2.1: software for biological sequence analysis. J Open Source Softw. 2017; 2(15):272. https://doi.org/10.21105/joss.00272.
Article
Google Scholar
Chikhi R, Limasset A, Medvedev P. Compacting de bruijn graphs from sequencing data quickly and in low memory. Bioinformatics. 2016a; 32(12):i201–8. https://doi.org/10.1093/bioinformatics/btw279.
Stewart CA, Turner G, Vaughn M, Gaffney NI, Cockerill TM, Foster I, Hancock D, Merchant N, Skidmore E, Stanzione D, Taylor J, Tuecke S. Jetstream. In: Proceedings of the 2015 XSEDE Conference on Scientific Advancements Enabled by Enhanced Cyberinfrastructure - XSEDE’15. ACM Press: 2015. https://doi.org/10.1145/2792745.2792774.
Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies R, Scott JR, Wilkens-Diehr N. XSEDE: accelerating scientific discovery. Comput Sci Eng. 2014; 16(5):62–74. https://doi.org/10.1109/mcse.2014.80.
Article
Google Scholar
Chikhi R, Limasset A, Medvedev P. Compacting De Bruijn graphs from sequencing data quickly and in low memory. Bioinformatics. 2016b; 32(12):i201–8.
Brown CT, Irber L, Cohen L. dib-lab/sourmash: v1.0. 2016. https://doi.org/10.5281/zenodo.153989.
Eddy SR, HMMER Development Team. Hmmer v3.2.1. 2018. http://hmmer.org/. Accessed 8 May 2020.
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A. The pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2015; 44(D1):D279–85. https://doi.org/10.1093/nar/gkv1344.
Article
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013; 30(4):772–80. https://doi.org/10.1093/molbev/mst010.
Article
CAS
Google Scholar
Westbrook A, Ramsdell J, Schuelke T, Normington L, Bergeron RD, Thomas WK, MacManes MD. PALADIN: protein alignment for functional profiling whole metagenome shotgun data. Bioinformatics. 2017; 33(10):1473–8. https://doi.org/10.1093/bioinformatics/btx021.
Article
CAS
Google Scholar
Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization ofde novogenome assemblies: Fig. 1. Bioinformatics. 2015; 31(20):3350–2. https://doi.org/10.1093/bioinformatics/btv383.
Article
CAS
Google Scholar
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016; 428(4):726–31. https://doi.org/10.1016/j.jmb.2015.11.006.
Article
CAS
Google Scholar
Koster J, Rahmann S. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics. 2012; 28(19):2520–22. https://doi.org/10.1093/bioinformatics/bts480.
Article
Google Scholar
Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, Kelley K, Hamrick JB, Grout J, Corlay S, et al.Jupyter notebooks-a publishing format for reproducible computational workflows. In: ELPUB. New York: IEEE: 2016. p. 87–90.
Google Scholar
van der Walt S, Varoquaux G. The NumPy array: a structure for efficient numerical computation. Comput Sci Eng. 2011; 13(2):22–30. https://doi.org/10.1109/mcse.2011.37.
Article
Google Scholar
Hunter JD. Matplotlib: a 2d graphics environment. Comput Sci Eng. 2007; 9(3):90–5. https://doi.org/10.1109/mcse.2007.55.
Article
Google Scholar
McKinney W. pandas: a foundational python library for data analysis and statistics. Python High Perform Sci Comput. 2011:1–9.
Jones E, Oliphant T, Peterson P, et al.SciPy: open source scientific tools for Python. 2001. http://www.scipy.org/. Accessed 8 May 2020.
Satyanarayan A, Moritz D, Wongsuphasawat K, Heer J. Vega-lite: a grammar of interactive graphics. IEEE Trans Vis Comput Graph. 2017; 23(1):341–50. https://doi.org/10.1109/tvcg.2016.2599030.
Article
Google Scholar