Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S, Mason CE. The birth of the epitranscriptome: deciphering the function of RNA modifications. Genome Biol. 2012;13:175.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Wan J, Shu XE, Mao Y, Liu X-M, Yuan X, et al. N6-methyladenosine guides mRNA alternative translation during integrated stress response. Mol Cell. 2018;69:636–47.e7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Safra M, Sas-Chen A, Nir R, Winkler R, Nachshon A, Bar-Yaacov D, et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature. 2017;551:251–5.
Article
CAS
PubMed
Google Scholar
Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C, et al. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18:2004–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim SL, Qu ZP, Kortschak RD, Lawrence DM, Geoghegan J, Hempfling A-L, et al. HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet. 2015;11:e1005620.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shoshan E, Mobley AK, Braeuer RR, Kamiya T, Huang L, Vasquez ME, et al. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat Cell Biol. 2015;17:311–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell. 2014;15:707–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kan L, Grozhik AV, Vedanayagam J, Patil DP, Pang N, Lim K-S, et al. The m6A pathway facilitates sex determination in Drosophila. Nat Commun. 2017;8:15737.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lence T, Akhtar J, Bayer M, Schmid K, Spindler L, Ho CH, et al. m6A modulates neuronal functions and sex determination in Drosophila. Nature. 2016;540:242–7.
Article
CAS
PubMed
Google Scholar
Zhao BS, Wang X, Beadell AV, Lu Z, Shi H, Kuuspalu A, et al. m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature. 2017;542:475–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 2013;155:793–806.
Article
CAS
PubMed
Google Scholar
Vandivier LE, Gregory BD. New insights into the plant epitranscriptome. J Exp Bot. 2018;69:4659–65.
Article
CAS
PubMed
Google Scholar
Jonkhout N, Tran J, Smith MA, Schonrock N, Mattick JS, Novoa EM. The RNA modification landscape in human disease. RNA. 2017;23:1754–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Torres AG, Batlle E, Ribas de Pouplana L. Role of tRNA modifications in human diseases. Trends Mol Med. 2014;20:306–14.
Article
CAS
PubMed
Google Scholar
Bednarova A, Hanna M, Durham I, VanCleave T, England A, Chaudhuri A, et al. Lost in translation: defects in transfer RNA modifications and neurological disorders. Front Mol Neurosci. 2017;10:135.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sarin LP, Leidel SA. Modify or die?--RNA modification defects in metazoans. RNA Biol. 2014;11:1555–67.
Article
PubMed
Google Scholar
Pereira M, Francisco S, Varanda AS, Santos M, Santos MAS, Soares AR. Impact of tRNA modifications and tRNA-modifying enzymes on proteostasis and human disease. Int J Mol Sci. 2018;19 https://doi.org/10.3390/ijms19123738.
Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, Grayhack EJ, et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell. 2006;21:87–96.
Article
CAS
PubMed
Google Scholar
Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 2010;24:1590–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ke S, Pandya-Jones A, Saito Y, Fak JJ, Vågbø CB, Geula S, et al. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev. 2017;31:990–1006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Novoa EM. Ribas de Pouplana L. Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet. 2012;28:574–81.
Article
CAS
PubMed
Google Scholar
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015;161:1388–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaneko T, Suzuki T, Kapushoc ST, Rubio MA, Ghazvini J, Watanabe K, et al. Wobble modification differences and subcellular localization of tRNAs in Leishmania tarentolae: implication for tRNA sorting mechanism. EMBO J. 2003;22:657–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dal Magro C, Keller P, Kotter A, Werner S, Duarte V, Marchand V, et al. A vastly increased chemical variety of RNA modifications containing a thioacetal structure. Angew Chem Int Ed Engl. 2018;57:7893–7.
Article
CAS
PubMed
Google Scholar
Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3:1233–47.
CAS
PubMed
PubMed Central
Google Scholar
Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 2019;74:640–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7:885–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, et al. Reversible methylation of m6Am in the 5’ cap controls mRNA stability. Nature. 2016; Available from: https://www.ncbi.nlm.nih.gov/pubmed/28002401. Accessed 10 May 2019.
Louloupi A, Ntini E, Conrad T, Orom UAV. Transient N-6-methyladenosine transcriptome sequencing reveals a regulatory role of m6A in splicing efficiency. Cell Rep. 2018;23:3429–37.
Article
CAS
PubMed
Google Scholar
Kasowitz SD, Ma J, Anderson SJ, Leu NA, Xu Y, Gregory BD, et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. PLoS Genet. 2018;14:e1007412.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tang C, Klukovich R, Peng H, Wang Z, Yu T, Zhang Y, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3’-UTR mRNAs in male germ cells. Proc Natl Acad Sci U S A. 2018;115:E325–33.
Article
CAS
PubMed
Google Scholar
Li A, Chen Y-S, Ping X-L, Yang X, Xiao W, Yang Y, et al. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res. 2017;27:444–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu J, Chen M, Huang H, Zhu J, Song H, Zhu J, et al. Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res. 2018;46:1412–23.
Article
CAS
PubMed
Google Scholar
Lin Z, Hsu PJ, Xing X, Fang J, Lu Z, Zou Q, et al. Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Res. 2017;27:1216–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Z, Tong M-H. m6A mRNA modification regulates mammalian spermatogenesis. Biochim Biophys Acta Gene Regul Mech. 2018; https://doi.org/10.1016/j.bbagrm.2018.10.016.
Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23:1369–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lian H, Wang Q-H, Zhu C-B, Ma J, Jin W-L. Deciphering the epitranscriptome in cancer. Trends Cancer Res. 2018;4:207–21.
Article
CAS
Google Scholar
Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The critical role of RNA m6A methylation in cancer. Cancer Res. 2019;79:1285–92.
Article
CAS
PubMed
Google Scholar
Lin X, Chai G, Wu Y, Li J, Chen F, Liu J, et al. RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of snail. Nat Commun. 2019;10:2065.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jaffrey SR, Kharas MG. Emerging links between m6A and misregulated mRNA methylation in cancer. Genome Med. 2017;9:2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46:D303–7.
Article
CAS
PubMed
Google Scholar
UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:D506–15.
Article
CAS
Google Scholar
Xu L, Liu X, Sheng N, Oo KS, Liang J, Chionh YH, et al. Three distinct 3-methylcytidine (m(3)C) methyltransferases modify tRNA and mRNA in mice and humans. J Biol Chem. 2017;292:14695–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vilardo E, Nachbagauer C, Buzet A, Taschner A, Holzmann J, Rossmanith W. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase--extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res. 2012;40:11583–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.
Article
PubMed Central
CAS
Google Scholar
Thul PJ, Lindskog C. The human protein atlas: a spatial map of the human proteome. Protein Sci. 2018:233–44. https://doi.org/10.1002/pro.3307.
Li B, Qing T, Zhu J, Wen Z, Yu Y, Fukumura R, et al. A comprehensive mouse transcriptomic BodyMap across 17 tissues by RNA-seq. Sci Rep. 2017;7:4200.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guimaraes JC, Zavolan M. Patterns of ribosomal protein expression specify normal and malignant human cells. Genome Biol. 2016;17:236.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, et al. A draft map of the human proteome. Nature. 2014;509:575–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Zheng Y, Gao Y, Lin Z, Yang S, Wang T, et al. Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res. 2018;28:879–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bettegowda A, Wilkinson MF. Transcription and post-transcriptional regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 2010;365:1637–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robles V, Herráez P, Labbé C, Cabrita E, Pšenička M, Valcarce DG, et al. Molecular basis of spermatogenesis and sperm quality. Gen Comp Endocrinol. 2017;245:5–9.
Article
CAS
PubMed
Google Scholar
Jiang J, White-Cooper H. Transcriptional activation in Drosophila spermatogenesis involves the mutually dependent function of aly and a novel meiotic arrest gene cookie monster. Development. 2003;130:563–73.
Article
CAS
PubMed
Google Scholar
Zhang Y, Zhang X, Shi J, Tuorto F, Li X, Liu Y, et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol. 2018;20:535–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Green CD, Ma Q, Manske GL, Shami AN, Zheng X, Marini S, et al. A comprehensive roadmap of murine spermatogenesis defined by single-cell RNA-Seq. Dev Cell. 2018;46:651–67.e10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Connolly CM, Dearth AT, Braun RE. Disruption of murine Tenr results in teratospermia and male infertility. Dev Biol. 2005;278:13–21.
Article
CAS
PubMed
Google Scholar
Harris T, Marquez B, Suarez S, Schimenti J. Sperm motility defects and infertility in male mice with a mutation in Nsun7, a member of the Sun domain-containing family of putative RNA methyltransferases. Biol Reprod. 2007;77:376–82.
Article
CAS
PubMed
Google Scholar
Xia B, Yan Y, Baron M, Wagner F, Barkley D, Chiodin M, et al. Widespread transcriptional scanning in the testis modulates gene evolution rates. Cell. 2020;180:248–62.e21.
Article
PubMed
PubMed Central
Google Scholar
Jung M, Wells D, Rusch J, Ahmad S, Marchini J, Myers SR, et al. Unified single-cell analysis of testis gene regulation and pathology in five mouse strains. Elife. 2019;8 https://doi.org/10.7554/eLife.43966.
Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol. 2012;19:900–5.
Article
CAS
PubMed
Google Scholar
Pandolfini L, Barbieri I, Bannister AJ, Hendrick A, Andrews B, Webster N, et al. METTL1 Promotes let-7 MicroRNA Processing via m7G Methylation. Mol Cell. 2019;74:1278–90.e9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13:227–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khosronezhad N, Hosseinzadeh Colagar A, Mortazavi SM. The Nsun7 (A11337)-deletion mutation, causes reduction of its protein rate and associated with sperm motility defect in infertile men. J Assist Reprod Genet. 2015;32:807–15.
Article
PubMed
PubMed Central
Google Scholar
Hussain S, Tuorto F, Menon S, Blanco S, Cox C, Flores JV, et al. The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation. Mol Cell Biol. 2013;33:1561–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mathieu C, Guérin JF, Cognat M, Lejeune H, Pinatel MC, Lornage J. Motility and fertilizing capacity of epididymal human spermatozoa in normal and pathological cases. Fertil Steril. 1992;57:871–6.
Article
CAS
PubMed
Google Scholar
Wolfson B, Gambone J, Rajfer J. Identification of motile sperm in caput epididymis. Intraoperative observations and clinical correlations. Urology. 1992;40:335–8.
Article
CAS
PubMed
Google Scholar
Kotaja N, Bhattacharyya SN, Jaskiewicz L, Kimmins S, Parvinen M, Filipowicz W, et al. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci U S A. 2006;103:2647–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delaunay S, Frye M. RNA modifications regulating cell fate in cancer. Nat Cell Biol. 2019;21:552–9.
Article
CAS
PubMed
Google Scholar
Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, et al. m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017;18:2622–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paris J, Morgan M, Campos J, Spencer GJ, Shmakova A, Ivanova I, et al. Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell. 2019; https://doi.org/10.1016/j.stem.2019.03.021.
Pinello N, Sun S, Wong JJ-L. Aberrant expression of enzymes regulating m6A mRNA methylation: implication in cancer. Cancer Biol Med. 2018;15:323–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okamoto M, Fujiwara M, Hori M, Okada K, Yazama F, Konishi H, et al. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells. PLoS Genet. 2014;10:e1004639.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goldman M, Craft B, Hastie M, Repecka K, Kamath A, McDade F, et al. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. bioRxiv. 2019:326470..
Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD. A distinct small RNA pathway silences selfish genetic elements in the germline. Science. 2006;313:320–4.
Article
CAS
PubMed
Google Scholar
Kirino Y, Mourelatos Z. 2′-O-methyl modification in mouse piRNAs and its methylase. Nucleic Acids Symp Ser. 2007;51:417–8.
Article
CAS
Google Scholar
Thiaville PC, El Yacoubi B, Köhrer C. Essentiality of threonylcarbamoyladenosine (t6A), a universal tRNA modification, in bacteria. Molecular. 2015; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/mmi.13209. Accessed 1 Nov 2019.
Thiaville PC, Legendre R, Rojas-Benítez D, Baudin-Baillieu A, Hatin I, Chalancon G, et al. Global translational impacts of the loss of the tRNA modification t6A in yeast. Microb Cell Fact. 2016;3:29–45.
Article
CAS
Google Scholar
Janin M, Ortiz-Barahona V, de Moura MC, Martínez-Cardús A, Llinàs-Arias P, Soler M, et al. Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathol. 2019; https://doi.org/10.1007/s00401-019-02062-4.
Õunap K, Käsper L, Kurg A, Kurg R. The human WBSCR22 protein is involved in the biogenesis of the 40S ribosomal subunits in mammalian cells. PLoS One. 2013;8:e75686.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang Y, Su R, Sheng Y, Dong L, Dong Z, Xu H, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 2019;35:677–91.e10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guschanski K, Warnefors M, Kaessmann H. The evolution of duplicate gene expression in mammalian organs. Genome Res. 2017;27:1461–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169:1187–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kato T, Daigo Y, Hayama S, Ishikawa N, Yamabuki T, Ito T, et al. A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis. Cancer Res. 2005;65:5638–46.
Article
CAS
PubMed
Google Scholar
Fawcett KA, Barroso I. The genetics of obesity: FTO leads the way. Trends Genet. 2010;26:266–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373:895–907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mauer J, Sindelar M, Despic V, Guez T, Hawley BR, Vasseur J-J, et al. FTO controls reversible m6Am RNA methylation during snRNA biogenesis. Nat Chem Biol. 2019;15:340–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO plays an oncogenic role in acute myeloid leukemia as a N 6-methyladenosine RNA demethylase. cancer cell. 2017:127–41. https://doi.org/10.1016/j.ccell.2016.11.017.
Braun DA, Rao J, Mollet G, Schapiro D, Daugeron M-C, Tan W, et al. Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nat Genet. 2017;49:1529–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Crécy-Lagard V, Boccaletto P, Mangleburg CG, Sharma P, Lowe TM, Leidel SA, et al. Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res. 2019; https://doi.org/10.1093/nar/gkz011.
Lobo J, Costa AL, Cantante M, Guimarães R, Lopes P, Antunes L, et al. m6A RNA modification and its writer/reader VIRMA/YTHDF3 in testicular germ cell tumors: a role in seminoma phenotype maintenance. J Transl Med. 2019;17:79.
Article
PubMed
PubMed Central
Google Scholar
Sharma S, Patnaik SK, Taggart RT, Baysal BE. The double-domain cytidine deaminase APOBEC3G is a cellular site-specific RNA editing enzyme. Sci Rep. 2016;6:39100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma S, Patnaik SK, Taggart RT, Kannisto ED, Enriquez SM, Gollnick P, et al. APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat Commun. 2015;6:6881.
Article
CAS
PubMed
Google Scholar
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2017; https://doi.org/10.1093/bib/bbx108.
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
Article
CAS
PubMed
Google Scholar
Rambaut A. FigTree v1; 2012. p. 4.
Google Scholar
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.
Article
PubMed
CAS
Google Scholar
Pervouchine DD, Djebali S, Breschi A, Davis CA, Barja PP, Dobin A, et al. Enhanced transcriptome maps from multiple mouse tissues reveal evolutionary constraint in gene expression. Nat Commun. 2015;6:5903.
Article
CAS
PubMed
Google Scholar
Yue F, Cheng Y, Breschi A, Vierstra J, Wu W, Ryba T, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515:355–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, Harrigan P, et al. The evolution of gene expression levels in mammalian organs. Nature. 2011;478:343–8.
Article
CAS
PubMed
Google Scholar
Griffin MC, Robinson RA, Trask DK. Validation of tissue microarrays using p53 immunohistochemical studies of squamous cell carcinoma of the larynx. Mod Pathol. 2003;16:1181–8.
Article
PubMed
Google Scholar
Begik O, Lucas MC, Liu H, Ramirez JM, Mattick JS. Eva Maria Novoa. RNAModMachinery. Github. 2020; Available from: https://github.com/novoalab/RNAModMachinery. [cited 2020 Mar 27].
Begik O, Lucas MC, Liu H, Ramirez JM, Mattick JS, Novoa EM. Immunofluorescence images. Figshare. 2020; https://doi.org/10.6084/m9.figshare.12036762.v1.
Begik O, Lucas MC, Liu H, Ramirez JM, Mattick JS, Novoa EM. Immunohistochemistry images. FigShare. 2020; https://doi.org/10.6084/m9.figshare.12036447.v1.