Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 2016;12:e1005767.
Article
PubMed
PubMed Central
Google Scholar
Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 2006;38:203–8.
Article
CAS
PubMed
Google Scholar
Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, et al. Mixed linear model approach adapted for genome-wide association studies. Nat Genet. 2010;42:355–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, et al. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. 2010;42:348–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. FaST linear mixed models for genome-wide association studies. Nat Methods. 2011;8:833–5.
Article
CAS
PubMed
Google Scholar
Wang SB, Feng JY, Ren WL, Huang B, Zhou L, Wen YJ, et al. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep. 2016;6:19444.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrick D, Dekkers J, Fernando R. The evolution of methodologies for genomic prediction. Livest Sci. 2014;166:10–8.
Article
Google Scholar
Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–29.
CAS
PubMed
PubMed Central
Google Scholar
Fan B, Onteru SK, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF. Genome-wide association study identifies loci for body composition and structural soundness traits in pigs. PLoS One. 2011;6:e14726.
Article
CAS
PubMed
PubMed Central
Google Scholar
Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics. 2011;12:186.
Article
PubMed
PubMed Central
Google Scholar
Zheng W, Gianoulis TA, Karczewski KJ, Zhao H, Snyder M. Regulatory variation within and between species. Annu Rev Genomics Hum Genet. 2011;12:327–46.
Article
CAS
PubMed
Google Scholar
Romero IG, Ruvinsky I, Gilad Y. Comparative studies of gene expression and the evolution of gene regulation. Nat Rev Genet. 2012;13:505–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blekhman R, Oshlack A, Chabot AE, Smyth GK, Gilad Y. Gene regulation in primates evolves under tissue-specific selection pressures. PLoS Genet. 2008;4:e1000271.
Article
PubMed
PubMed Central
Google Scholar
Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet. 2007;8:206–16.
Article
CAS
PubMed
Google Scholar
Enard W. Intra- and interspecific variation in primate gene expression patterns. Science. 2002;296:340–3.
Article
CAS
PubMed
Google Scholar
Gilad Y, Oshlack A, Smyth GK, Speed TP, White KP. Expression profiling in primates reveals a rapid evolution of human transcription factors. Nature. 2006;440:242–5.
Article
CAS
PubMed
Google Scholar
Odom DT, Dowell RD, Jacobsen ES, Gordon W, Danford TW, MacIsaac KD, et al. Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet. 2007;39:730–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Studer A, Zhao Q, Ross-Ibarra J, Doebley J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet. 2011;43:1160–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan YF, Marks ME, Jones FC, Villarreal Jr G, Shapiro MD, Brady SD, et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science. 2010;327:302–5.
Article
CAS
PubMed
Google Scholar
Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brem RBY, Yvert G, Clinton R, Kruglyak L. Genetic dissection of transcriptional regulation in budding yeast. Science. 2002;296:752–5.
Article
CAS
PubMed
Google Scholar
Lemmon ZH, Bukowski R, Sun Q, Doebley JF. The role of cis regulatory evolution in maize domestication. PLoS Genet. 2014;10:e1004745.
Article
PubMed
PubMed Central
Google Scholar
Brawand D. The evolution of gene expression levels in mammalian organs. Nature. 2011;478:343–8.
Article
CAS
PubMed
Google Scholar
Gu X, Su Z. Tissue-driven hypothesis of genomic evolution and sequence-expression correlations. Proc Natl Acad Sci U S A. 2007;104:2779–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, et al. Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet. 2011;43:648–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swanson-Wagner RA, DeCook R, Jia Y, Bancroft T, Ji T, Zhao X, et al. Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids. Science. 2009;326:1118–20.
Article
CAS
PubMed
Google Scholar
Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wu W, et al. Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol. 2014;15:R40.
Article
PubMed
PubMed Central
Google Scholar
Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45:1238–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang GJ, Shifman S, Valdar W, Johannesson M, Yalcin B, Taylor MS, et al. High resolution mapping of expression QTLs in heterogeneous stock mice in multiple tissues. Genome Res. 2009;19:1133–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buckler ES, Gaut BS, McMullen MD. Molecular and functional diversity of maize. Curr Opin Plant Biol. 2006;9:172–6.
Article
CAS
PubMed
Google Scholar
Nannas NJ, Dawe RK. Genetic and genomic toolbox of Zea mays. Genetics. 2015;199:655–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace JG, Larsson SJ, Buckler ES. Entering the second century of maize quantitative genetics. Heredity (Edinb). 2014;112:30–8.
Article
CAS
Google Scholar
Kawakatsu T, Huang SS, Jupe F, Sasaki E, Schmitz RJ, Urich MA, et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell. 2016;166:492–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sablowski R. Genes and functions controlled by floral organ identity genes. Semin Cell Dev Biol. 2010;21:94–9.
Article
CAS
PubMed
Google Scholar
Preston JC, Hileman LC. Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front Plant Sci. 2013;4:80.
PubMed
PubMed Central
Google Scholar
Leiboff S, Li X, Hu HC, Todt N, Yang J, Li X, et al. Genetic control of morphometric diversity in the maize shoot apical meristem. Nat Commun. 2015;6:8974.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murray JA, Jones A, Godin C, Traas J. Systems analysis of shoot apical meristem growth and development: integrating hormonal and mechanical signaling. Plant Cell. 2012;24:3907–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, et al. The genetic architecture of maize height. Genetics. 2014;196:1337–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson AM, Yu J, Timmermans MC, Schnable P, Crants JC, Scanlon MJ, et al. Diversity of maize shoot apical meristem architecture and its relationship to plant morphology. G3 (Bethesda). 2015;5:819–7.
Article
Google Scholar
Bai F, Reinheimer R, Durantini D, Kellogg EA, Schmidt RJ. TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize. Proc Natl Acad Sci U S A. 2012;109:12225–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stone M. Cross-validatory choice and assessment of statistical predictions. J R Stat Soc. 1974;36:37.
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
Article
PubMed
PubMed Central
Google Scholar
Roschzttardtz H, Seguela-Arnaud M, Briat JF, Vert G, Curie C. The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. Plant Cell. 2011;23:2725–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castro Marin I, Loef I, Bartetzko L, Searle I, Coupland G, Stitt M, et al. Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta. 2011;233:539–52.
Article
PubMed
Google Scholar
Zinta G, Khan A, AbdElgawad H, Verma V, Srivastava AK. Unveiling the redox control of plant reproductive development during abiotic stress. Front Plant Sci. 2016;7:700.
Article
PubMed
PubMed Central
Google Scholar
Guney E, Oliva B. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization. PLoS One. 2012;7:e43557.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu G, Wu A, Xu XJ, Xiao PP, Lu L, Liu J, et al. PPIM: a protein-protein interaction database for maize. Plant Physiol. 2016;170:618–26.
Article
CAS
PubMed
Google Scholar
Walley JW, Sartor RC, Shen Z, Schmitz RJ, Wu KJ, Urich MA, Nery JR, Smith LG, Schnable JC, Ecker JR, Briggs SP. Integration of omic networks in a developmental atlas of maize. Science. 2016;353:814–8.
Article
CAS
PubMed
Google Scholar
Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015;16:85–97.
Article
CAS
PubMed
Google Scholar
Conde L, Bracci PM, Richardson R, Montgomery SB, Skibola CF. Integrating GWAS and expression data for functional characterization of disease-associated SNPs: an application to follicular lymphoma. Am J Hum Genet. 2013;92:126–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung D, Yang C, Li C, Gelernter J, Zhao H. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet. 2014;10:e1004787.
Article
PubMed
PubMed Central
Google Scholar
Jin M, Liu H, He C, Fu J, Xiao Y, Wang Y, et al. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation. Sci Rep. 2016;6:18936.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robert C, MacCallum SZ, Kristopher JP, Derek DR. On the practice of dichotomization of quantitative variables. Psychol Methods. 2002;7:19–40.
Article
Google Scholar
Springer NM, Ying K, Fu Y, Ji T, Yeh CT, Jia Y, et al. Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet. 2009;5:e1000734.
Article
PubMed
PubMed Central
Google Scholar
Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26:873–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen ZJ. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol. 2007;58:377–406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Zhu C, Yeh CT, Wu W, Takacs EM, Petsch KA, et al. Genic and nongenic contributions to natural variation of quantitative traits in maize. Genome Res. 2012;22;2436-44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heinz S, Romanoski CE, Benner C, Allison KA, Kaikkonen MU, Orozco LD, et al. Effect of natural genetic variation on enhancer selection and function. Nature. 2013;503:487–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Colosimo PF, Hosemann KE, Balabhadra S, Villarreal Jr G, Dickson M, Grimwood J, et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science. 2005;307:1928–33.
Article
CAS
PubMed
Google Scholar
Purugganan MD, Fuller DQ. The nature of selection during plant domestication. Nature. 2009;457:843–8.
Article
CAS
PubMed
Google Scholar
Gross BL, Olsen KM. Genetic perspectives on crop domestication. Trends Plant Sci. 2010;15:529–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khaitovich P, Enard W, Lachmann M, Paabo S. Evolution of primate gene expression. Nat Rev Genet. 2006;7:693–702.
Article
CAS
PubMed
Google Scholar
Gilad Y, Oshlack A, Rifkin SA. Natural selection on gene expression. Trends Genet. 2006;22:456–61.
Article
CAS
PubMed
Google Scholar
Young MD, McCarthy DJ, Wakefield MJ, Smyth GK, Oshlack A, Robinson MD. Differential expression for RNA sequencing (RNA-Seq) data: mapping, summarization, statistical analysis, and experimental design. In: Rodríguez-Ezpeleta N, Hackenberg M, Aransay A, editors. Bioinformatics for high throughput sequencing. New York: Springer; 2012. p. 169–90.
Chapter
Google Scholar
Lund SP, Nettleton D, McCarthy DJ, Smyth GK. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat Appl Genet Mol Biol. 2012; doi:10.1515/1544-6115.1826.
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.
Book
Google Scholar
Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37:914–39.
Article
CAS
PubMed
Google Scholar
Friendly M. Corrgrams: exploratory displays for correlation matrices. Am Stat. 2002;56:316–24.
Article
Google Scholar
Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, et al. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28:2397–9.
Article
CAS
PubMed
Google Scholar
Fernando R, Toosi A, Wolc A, Garrick D, Dekkers J. Application of whole-genome prediction methods for genome-wide association studies: a Bayesian approach. J Agric Biol Environ Stat. 2017;22:172–93.
Article
Google Scholar
Alfons A. cvTools: cross-validation tools for regression models. R package version 03. 2012;2.
Chang J, Cho H, Chou HH. Mango: combining and analyzing heterogeneous biological networks. Bio Data Min. 2016;9:25.
Article
Google Scholar
Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. Phys Rev E. 2004; doi:10.1103/PhysRevE.70.066111.
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.
Article
PubMed
PubMed Central
Google Scholar
Yilmaz A, Nishiyama Jr MY, Fuentes BG, Souza GM, Janies D, Gray J, et al. GRASSIUS: a platform for comparative regulatory genomics across the grasses. Plant Physiol. 2009;149:171–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E. AGRIS: the Arabidopsis gene regulatory information server, an update. Nucleic Acids Res. 2011;39:D1118–22.
Article
CAS
PubMed
Google Scholar