Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M: An integrated encyclopedia of DNA elements in the human genome. Nature. 2012, 489: 57-74.
Article
Google Scholar
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, et al: Landscape of transcription in human cells. Nature. 2012, 489: 101-108.
Article
PubMed
PubMed Central
Google Scholar
Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigó R: The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012, 22: 1775-1789.
Article
PubMed
PubMed Central
Google Scholar
Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, Young G, Lucas AB, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn JL, Root DE, Lander ES: lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011, 477: 295-300.
Article
PubMed
PubMed Central
Google Scholar
Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011, 25: 1915-1927.
Article
PubMed
PubMed Central
Google Scholar
Bánfai B, Jia H, Khatun J, Wood E, Risk B, Gundling WE, Kundaje A, Gunawardena HP, Yu Y, Xie L, Krajewski K, Strahl BD, Chen X, Bickel P, Giddings MC, Brown JB, Lipovich L: Long noncoding RNAs are rarely translated in two human cell lines. Genome Res. 2012, 22: 1646-1657.
Article
PubMed
PubMed Central
Google Scholar
Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES: Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell. 2013, 154: 240-251.
Article
PubMed
PubMed Central
Google Scholar
Tsai M-C, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY: Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010, 329: 689-693.
Article
PubMed
PubMed Central
Google Scholar
Krummel DAP, Nagai K, Oubridge C: Structure of spliceosomal ribonucleoproteins. F1000 Biol Rep. 2010, 2: 39-
PubMed
PubMed Central
Google Scholar
Nagai K, Muto Y, Pomeranz Krummel DA, Kambach C, Ignjatovic T, Walke S, Kuglstatter A: Structure and assembly of the spliceosomal snRNPs. Biochem Soc Trans. 2001, : 15-26.
Google Scholar
Maenner S, Müller M, Fröhlich J, Langer D, Becker PB: ATP-Dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins. Mol Cell. 2013, 51: 174-184.
Article
PubMed
Google Scholar
Ilik IA, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D, Toscano S, Wan Y, Spitale RC, Luscombe N, Backofen R, Chang HY, Akhtar A: Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol Cell. 2013, 51: 156-173.
Article
PubMed
PubMed Central
Google Scholar
Bertani S, Sauer S, Bolotin E, Sauer F: The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol Cell. 2011, 43: 1040-1046.
Article
PubMed
PubMed Central
Google Scholar
Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E: Genome-wide measurement of RNA secondary structure in yeast. Nature. 2010, 467: 103-107.
Article
PubMed
Google Scholar
Underwood JG, Uzilov AV, Katzman S, Onodera CS, Mainzer JE, Mathews DH, Lowe TM, Salama SR, Haussler D: FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods. 2010, 7: 995-1001.
Article
PubMed
PubMed Central
Google Scholar
Lucks JB, Mortimer SA, Trapnell C, Luo S, Aviran S, Schroth GP, Pachter L, Doudna JA, Arkin AP: Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci U S A. 2011, 108: 11063-11068.
Article
PubMed
PubMed Central
Google Scholar
Li F, Zheng Q, Ryvkin P, Dragomir I, Desai Y, Aiyer S, Valladares O, Yang J, Bambina S, Sabin LR, Murray JI, Lamitina T, Raj A, Cherry S, Wang L-S, Gregory BD: Global analysis of RNA secondary structure in two metazoans. Cell Rep. 2012, 1: 69-82.
Article
PubMed
Google Scholar
Wan Y, Qu K, Ouyang Z, Kertesz M, Li J, Tibshirani R, Makino DL, Nutter RC, Segal E, Chang HY: Genome-wide measurement of RNA folding energies. Mol Cell. 2012, 48: 169-181.
Article
PubMed
PubMed Central
Google Scholar
Donahue CP, Fedor MJ: Kinetics of hairpin ribozyme cleavage in yeast. RNA. 1997, 3: 961-973.
PubMed
PubMed Central
Google Scholar
Schroeder R, Grossberger R, Pichler A, Waldsich C: RNA folding in vivo. Curr Opin Struct Biol. 2002, 12: 296-300.
Article
PubMed
Google Scholar
Donahue CP, Yadava RS, Nesbitt SM, Fedor MJ: The kinetic mechanism of the hairpin ribozyme in vivo: influence of RNA helix stability on intracellular cleavage kinetics. J Mol Biol. 2000, 295: 693-707.
Article
PubMed
Google Scholar
Treiber DK, Williamson JR: Exposing the kinetic traps in RNA folding. Curr Opin Struct Biol. 1999, 9: 339-345.
Article
PubMed
Google Scholar
Treiber DK, Williamson JR: Beyond kinetic traps in RNA folding. Curr Opin Struct Biol. 2001, 11: 309-314.
Article
PubMed
Google Scholar
Shcherbakova I, Mitra S, Laederach A, Brenowitz M: Energy barriers, pathways, and dynamics during folding of large, multidomain RNAs. Curr Opin Chem Biol. 2008, 12: 655-666.
Article
PubMed
PubMed Central
Google Scholar
Pan T, Sosnick TR: Intermediates and kinetic traps in the folding of a large ribozyme revealed by circular dichroism and UV absorbance spectroscopies and catalytic activity. Nat Struct Mol Biol. 1997, 4: 931-938.
Article
Google Scholar
Antal M, Boros E, Solymosy F, Kiss T: Analysis of the structure of human telomerase RNA in vivo. Nucleic Acids Res. 2002, 30: 912-920.
Article
PubMed
PubMed Central
Google Scholar
Zemora G, Waldsich C: RNA folding in living cells. RNA Biol. 2010, 7: 634-641.
Article
PubMed
PubMed Central
Google Scholar
Pan T, Sosnick T: RNA folding during transcription. Annu Rev Biophys Biomol Struct. 2006, 35: 161-175.
Article
PubMed
Google Scholar
Heilman-Miller SL, Woodson SA: Effect of transcription on folding of the Tetrahymena ribozyme. RNA. 2003, 9: 722-733.
Article
PubMed
PubMed Central
Google Scholar
Herschlag D: RNA chaperones and the RNA folding problem. J Biol Chem. 1995, 270: 20871-20874.
Article
PubMed
Google Scholar
Russell R: RNA misfolding and the action of chaperones. Front Biosci. 2008, 13: 1-
Article
PubMed
PubMed Central
Google Scholar
Cristofari G, Darlix J-L: The ubiquitous nature of RNA chaperone proteins. Prog Nucleic Acid Res Mol Biol. 2002, 72: 223-268.
Article
PubMed
Google Scholar
Weeks KM: Protein-facilitated RNA folding. Curr Opin Struct Biol. 1997, 7: 336-342.
Article
PubMed
Google Scholar
Ding Y, Tang Y, Kwok CK, Zhang Y, Bevilacqua PC, Assmann SM: In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature. 2014, 505: 696-700.
Article
PubMed
Google Scholar
Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS: Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature. 2014, 505: 701-705.
Article
PubMed
PubMed Central
Google Scholar
Wells SE, Hughes JM, Igel AH, Ares M: Use of dimethyl sulfate to probe RNA structure in vivo. Methods Enzymol. 2000, 318: 479-493.
Article
PubMed
Google Scholar
Tijerina P, Mohr S, Russell R: DMS footprinting of structured RNAs and RNA-protein complexes. Nat Protoc. 2007, 2: 2608-2623.
Article
PubMed
PubMed Central
Google Scholar
Metz DH, Brown GL: The investigation of nucleic acid secondary structure by means of chemical modification with a carbodiimide reagent. I. The reaction between N-cyclohexyl-N'-beta-(4-methylmorpholinium)ethylcarbodiimide and model nucleotides. Biochemistry. 1969, 8: 2312-2328.
Article
PubMed
Google Scholar
Metz DH, Brown GL: The investigation of nucleic acid secondary structure by means of chemical modification with a carbodiimide reagent. II. The reaction between N-cyclohexyl-N'-beta-(4-methylmorpholinium)ethylcarbodiimide and transfer ribonucleic acid. Biochemistry. 1969, 8: 2329-2342.
Article
PubMed
Google Scholar
Ho NW, Gilham PT: Reaction of pseudouridine and inosine with N-cyclohexyl-N'-beta-(4-methylmorpholinium)ethylcarbodiimide. Biochemistry. 1971, 10: 3651-3657.
Article
PubMed
Google Scholar
Incarnato D, Krepelova A, Neri F: High-throughput single nucleotide variant discovery in E14 mouse embryonic stem cells provides a new reference genome assembly. Genomics. 2014, 104: 121-127.
Article
PubMed
Google Scholar
Deigan KE, Li TW, Mathews DH, Weeks KM: Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci U S A. 2009, 106: 97-102.
Article
PubMed
PubMed Central
Google Scholar
Hingerty B, Brown RS, Jack A: Further refinement of the structure of yeast tRNAPhe. J Mol Biol. 1978, 124: 523-534.
Article
PubMed
Google Scholar
Puglisi EV, Puglisi JD: Probing the conformation of human tRNA(3)(Lys) in solution by NMR. FEBS Lett. 2007, 581: 5307-5314.
Article
PubMed
Google Scholar
Bayfield MA, Dahlberg AE, Schulmeister U, Dorner S, Barta A: A conformational change in the ribosomal peptidyl transferase center upon active/inactive transition. Proc Natl Acad Sci U S A. 2001, 98: 10096-10101.
Article
PubMed
PubMed Central
Google Scholar
Lyonnais S, Hounsou C, Teulade-Fichou M-P, Jeusset J, Le Cam E, Mirambeau G: G-quartets assembly within a G-rich DNA flap. A possible event at the center of the HIV-1 genome. Nucleic Acids Res. 2002, 30: 5276-5283.
Article
PubMed
PubMed Central
Google Scholar
Lambert NJ, Gu SG, Zahler AM: The conformation of microRNA seed regions in native microRNPs is prearranged for presentation to mRNA targets. Nucleic Acids Res. 2011, 39: 4827-4835.
Article
PubMed
PubMed Central
Google Scholar
Holmberg L, Melander Y, Nygård O: Probing the structure of mouse Ehrlich ascites cell 5.8S, 18S and 28S ribosomal RNA in situ. Nucleic Acids Res. 1994, 22: 1374-1382.
Article
PubMed
PubMed Central
Google Scholar
Alkemar G, Nygård O: Secondary structure of two regions in expansion segments ES3 and ES6 with the potential of forming a tertiary interaction in eukaryotic 40S ribosomal subunits. RNA. 2004, 10: 403-411.
Article
PubMed
PubMed Central
Google Scholar
Melander Y, Holmberg L, Nygård O: Structure of 18 S ribosomal RNA in native 40 S ribosomal subunits. J Biol Chem. 1997, 272: 3254-3258.
Article
PubMed
Google Scholar
Ségault V, Will CL, Polycarpou-Schwarz M, Mattaj IW, Branlant C, Lührmann R: Conserved loop I of U5 small nuclear RNA is dispensable for both catalytic steps of pre-mRNA splicing in HeLa nuclear extracts. Mol Cell Biol. 1999, 19: 2782-2790.
Article
PubMed
PubMed Central
Google Scholar
Lukowiak AA, Granneman S, Mattox SA, Speckmann WA, Jones K, Pluk H, Venrooij WJ, Terns RM, Terns MP: Interaction of the U3-55 k protein with U3 snoRNA is mediated by the box B/C motif of U3 and the WD repeats of U3-55 k. Nucleic Acids Res. 2000, 28: 3462-3471.
Article
PubMed
PubMed Central
Google Scholar
Granneman S, Pruijn GJM, Horstman W, van Venrooij WJ, Lührmann R, Watkins NJ: The hU3-55 K protein requires 15.5 K binding to the box B/C motif as well as flanking RNA elements for its association with the U3 small nucleolar RNA in Vitro. J Biol Chem. 2002, 277: 48490-48500.
Article
PubMed
Google Scholar
Yu E, Fabris D: Direct probing of RNA structures and RNA-protein interactions in the HIV-1 packaging signal by chemical modification and electrospray ionization fourier transform mass spectrometry. J Mol Biol. 2003, 330: 211-223.
Article
PubMed
Google Scholar
Mougin A, Gottschalk A, Fabrizio P, Lührmann R, Branlant C: Direct probing of RNA structure and RNA-protein interactions in purified HeLa cell’s and yeast spliceosomal U4/U6.U5 tri-snRNP particles. J Mol Biol. 2002, 317: 631-649.
Article
PubMed
Google Scholar
Hajdin CE, Bellaousov S, Huggins W, Leonard CW, Mathews DH, Weeks KM: Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Proc Natl Acad Sci U S A. 2013, 110: 5498-5503.
Article
PubMed
PubMed Central
Google Scholar
Spitale RC, Crisalli P, Flynn RA, Torre EA, Kool ET, Chang HY: RNA SHAPE analysis in living cells. Nat Chem Biol. 2013, 9: 18-20.
Article
PubMed
PubMed Central
Google Scholar
Kwok CK, Ding Y, Tang Y, Assmann SM, Bevilacqua PC: Determination of in vivo RNA structure in low-abundance transcripts. Nat Commun. 2013, 4: 2971-
Article
PubMed
Google Scholar
Reuter JS, Mathews DH: RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics. 2010, 11: 129-
Article
PubMed
PubMed Central
Google Scholar
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA: Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007, 318: 1917-1920.
Article
PubMed
Google Scholar
Cho J, Chang H, Kwon SC, Kim B, Kim Y, Choe J, Ha M, Kim YK, Kim VN: LIN28A is a suppressor of ER-associated translation in embryonic stem cells. Cell. 2012, 151: 765-777.
Article
PubMed
Google Scholar
Shabalina SA, Ogurtsov AY, Spiridonov NA: A periodic pattern of mRNA secondary structure created by the genetic code. Nucleic Acids Res. 2006, 34: 2428-2437.
Article
PubMed
PubMed Central
Google Scholar
Wan Y, Qu K, Zhang QC, Flynn RA, Manor O, Ouyang Z, Zhang J, Spitale RC, Snyder MP, Segal E, Chang HY: Landscape and variation of RNA secondary structure across the human transcriptome. Nature. 2014, 505: 706-709.
Article
PubMed
PubMed Central
Google Scholar
Gu S, Jin L, Zhang F, Sarnow P, Kay MA: Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat Struct Mol Biol. 2009, 16: 144-150.
Article
PubMed
PubMed Central
Google Scholar
Brown KM, Chu C-Y, Rana TM: Target accessibility dictates the potency of human RISC. Nat Struct Mol Biol. 2005, 12: 469-470.
Article
PubMed
Google Scholar
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E: The role of site accessibility in microRNA target recognition. Nat Genet. 2007, 39: 1278-1284.
Article
PubMed
Google Scholar
Clote P, Ferré F, Kranakis E, Krizanc D: Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA. 2005, 11: 578-591.
Article
PubMed
PubMed Central
Google Scholar
Neri F, Krepelova A, Incarnato D, Maldotti M, Parlato C, Galvagni F, Matarese F, Stunnenberg HG, Oliviero S: Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs. Cell. 2013, 155: 121-134.
Article
PubMed
Google Scholar
Galvagni F, Cartocci E, Oliviero S: The dystrophin promoter is negatively regulated by YY1 in undifferentiated muscle cells. J Biol Chem. 1998, 273: 33708-33713.
Article
PubMed
Google Scholar
CIRS-seq: Chemical Inference of RNA Structure. [], [http://epigenetics.hugef-research.org/data/cirs.php]