Bates GP, Dorsey R, Gusella JF, Hayden MR, Kay C, Leavitt BR, et al. Huntington disease. Nat Rev Dis Primers. 2015;1:15005.
Article
Google Scholar
Carroll JB, Bates GP, Steffan J, Saft C, Tabrizi SJ. Treating the whole body in Huntington's disease. Lancet Neurol. 2015;14:1135–42.
Article
Google Scholar
Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci. 2005;6:919–30.
Article
CAS
Google Scholar
Saudou F, Humbert S. The Biology of Huntingtin. Neuron. 2016;89:910–26.
Article
CAS
Google Scholar
Lu AT, Narayan P, Grant MJ, Langfelder P, Wang N, Kwak S, et al. DNA methylation study of Huntington’s disease and motor progression in patients and in animal models. Nat Commun. 2020;11:4529.
Article
CAS
Google Scholar
Morozko EL, Smith-Geater C, Monteys AM, Pradhan S, Lim RG, Langfelder P, et al. PIAS1 modulates striatal transcription, DNA damage repair, and SUMOylation with relevance to Huntington’s disease. Proc Natl Acad Sci U S A. 2021;118:e2021836118
Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, et al. SUMO modification of Huntingtin and Huntington’s disease pathology. Science. 2004;304:100–4.
Article
CAS
Google Scholar
Ochaba J, Monteys AM, O'Rourke JG, Reidling JC, Steffan JS, Davidson BL, et al. PIAS1 regulates mutant huntingtin accumulation and Huntington’s disease-associated phenotypes in vivo. Neuron. 2016;90:507–20.
Article
CAS
Google Scholar
O'Rourke JG, Gareau JR, Ochaba J, Song W, Rasko T, Reverter D, et al. SUMO-2 and PIAS1 modulate insoluble mutant huntingtin protein accumulation. Cell Rep. 2013;4:362–75.
Article
CAS
Google Scholar
Sedighi F, Adegbuyiro A, Legleiter J. SUMOylation prevents huntingtin fibrillization and localization onto lipid membranes. ACS Chem Neurosci. 2020;11:328–43.
Article
CAS
Google Scholar
Ramirez-Jarquin UN, Sharma M, Zhou W, Shahani N, Subramaniam S. Deletion of SUMO1 attenuates behavioral and anatomical deficits by regulating autophagic activities in Huntington disease. Proc Natl Acad Sci U S A. 2022;119:e2107187119.
de Souza JM, Abd-Elrahman KS, Ribeiro FM, Ferguson SSG. mGluR5 regulates REST/NRSF signaling through N-cadherin/beta-catenin complex in Huntington's disease. Mol Brain. 2020;13:118.
Article
Google Scholar
Johnson R, Buckley NJ. Gene dysregulation in Huntington's disease: REST, microRNAs and beyond. NeuroMolecular Med. 2009;11:183–99.
Article
CAS
Google Scholar
Ravache M, Weber C, Merienne K, Trottier Y. Transcriptional activation of REST by Sp1 in Huntington’s disease models. PLoS One. 2010;5:e14311.
Article
CAS
Google Scholar
Bondulich MK, Jolinon N, Osborne GF, Smith EJ, Rattray I, Neueder A, et al. Myostatin inhibition prevents skeletal muscle pathophysiology in Huntington’s disease mice. Sci Rep. 2017;7:14275.
Article
Google Scholar
von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci U S A. 2013;110:16474–9.
Article
Google Scholar
Suomi T, Seyednasrollah F, Jaakkola MK, Faux T, Elo LL. ROTS: an R package for reproducibility-optimized statistical testing. PLoS Comput Biol. 2017;13:e1005562.
Article
Google Scholar
Yuan Q, Li XD, Zhang SM, Wang HW, Wang YL. Extracellular vesicles in neurodegenerative diseases: insights and new perspectives. Genes Dis. 2021;8:124–32.
Article
CAS
Google Scholar
La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature. 1991;352:77–9.
Article
Google Scholar
David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet. 1997;17:65–70.
Article
CAS
Google Scholar
Wang G, Liu X, Gaertig MA, Li S, Li XJ. Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Proc Natl Acad Sci U S A. 2016;113:3359–64.
Article
CAS
Google Scholar
Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012;74:1031–44.
Article
CAS
Google Scholar
Barker RA, Fujimaki M, Rogers P, Rubinsztein DC. Huntingtin-lowering strategies for Huntington’s disease. Expert Opin Investig Drugs. 2020;29:1125–32.
Article
CAS
Google Scholar
Marxreiter F, Stemick J, Kohl Z. Huntingtin lowering strategies. Int J Mol Sci. 2020;21:2146.
Chao MJ, Gillis T, Atwal RS, Mysore JS, Arjomand J, Harold D, et al. Haplotype-based stratification of Huntington’s disease. Eur J Hum Genet. 2017;25:1202–9.
Article
CAS
Google Scholar
Kim KH, Abu Elneel K, Shin JW, Keum JW, Seong D, Kwak S, et al. Full sequence of mutant huntingtin 3'-untranslated region and modulation of its gene regulatory activity by endogenous microRNA. J Hum Genet. 2019;64:995–1004.
Article
CAS
Google Scholar
Lee JM, Kim KH, Shin A, Chao MJ, Abu Elneel K, Gillis T, et al. Sequence-level analysis of the major European Huntington disease haplotype. Am J Hum Genet. 2015;97:435–44.
Article
CAS
Google Scholar
Horvath S, Langfelder P, Kwak S, Aaronson J, Rosinski J, Vogt TF, et al. Huntington’s disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging (Albany NY). 2016;8:1485–512.
Article
CAS
Google Scholar
Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85:348–62.
Article
CAS
Google Scholar
Yan S, Li S, Li XJ. Use of large animal models to investigate Huntington’s diseases. Cell Regen. 2019;8:9–11.
Article
Google Scholar
Rangel-Barajas C, Rebec GV. Overview of Huntington’s disease models: neuropathological, molecular, and behavioral differences. Curr Protoc Neurosci. 2018;83:e47.
Article
Google Scholar
Neueder A, Orth M. Mitochondrial biology and the identification of biomarkers of Huntington’s disease. Neurodegener Dis Manag. 2020;10:243–55.
Article
Google Scholar
Hodges A, Strand AD, Aragaki AK, Kuhn A, Sengstag T, Hughes G, et al. Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet. 2006;15:965–77.
Article
CAS
Google Scholar
Labadorf AT, Myers RH. Evidence of extensive alternative splicing in post mortem human brain HTT transcription by mRNA sequencing. PLoS One. 2015;10:e0141298.
Article
Google Scholar
Wojtowicz S, Strosznajder AK, Jezyna M, Strosznajder JB. The novel role of PPAR alpha in the brain: promising target in therapy of Alzheimer’s disease and other neurodegenerative disorders. Neurochem Res. 2020;45:972–88.
Article
CAS
Google Scholar
Altinoz MA, Ozpinar A, Ozpinar A, Hacker E. Erucic acid, a nutritional PPARdelta-ligand may influence Huntington’s disease pathogenesis. Metab Brain Dis. 2020;35:1–9.
Article
CAS
Google Scholar
Dickey AS, Pineda VV, Tsunemi T, Liu PP, Miranda HC, Gilmore-Hall SK, et al. PPAR-delta is repressed in Huntington’s disease, is required for normal neuronal function and can be targeted therapeutically. Nat Med. 2016;22:37–45.
Article
CAS
Google Scholar
Corona JC, Duchen MR. PPARgamma as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med. 2016;100:153–63.
Article
CAS
Google Scholar
Chiang MC, Chern Y, Huang RN. PPARgamma rescue of the mitochondrial dysfunction in Huntington’s disease. Neurobiol Dis. 2012;45:322–8.
Article
CAS
Google Scholar
Jin J, Albertz J, Guo Z, Peng Q, Rudow G, Troncoso JC, et al. Neuroprotective effects of PPAR-gamma agonist rosiglitazone in N171-82Q mouse model of Huntington’s disease. J Neurochem. 2013;125:410–9.
Article
CAS
Google Scholar
UniProt C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–9.
Article
Google Scholar
Fukuda M. TBC proteins: GAPs for mammalian small GTPase Rab? Biosci Rep. 2011;31:159–68.
Article
CAS
Google Scholar
Yuan W, Song C. The emerging role of Rab5 in membrane receptor trafficking and signaling pathways. Biochem Res Int. 2020;2020:4186308.
Article
Google Scholar
Pal A, Severin F, Lommer B, Shevchenko A, Zerial M. Huntingtin-HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington’s disease. J Cell Biol. 2006;172:605–18.
Article
CAS
Google Scholar
Kegel KB, Kim M, Sapp E, McIntyre C, Castano JG, Aronin N, et al. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci. 2000;20:7268–78.
Article
CAS
Google Scholar
Trajkovic K, Jeong H, Krainc D. Mutant huntingtin is secreted via a late endosomal/lysosomal unconventional secretory pathway. J Neurosci. 2017;37:9000–12.
Article
CAS
Google Scholar
Mathews PM, Levy E. Exosome production is key to neuronal endosomal pathway integrity in neurodegenerative diseases. Front Neurosci. 2019;13:1347.
Article
Google Scholar
Lizarraga-Valderrama LR, Sheridan GK. Extracellular vesicles and intercellular communication in the central nervous system. FEBS Lett. 2021;595:1391–410.
Article
CAS
Google Scholar
Yates AG, Pink RC, Erdbrugger U, Siljander PR, Dellar ER, Pantazi P, et al. In sickness and in health: the functional role of extracellular vesicles in physiology and pathology in vivo: Part II: Pathology: Part II: Pathology. J Extracell Vesicles. 2022;11:e12190.
CAS
Google Scholar
Sanchez II, Nguyen TB, England WE, Lim RG, Vu AQ, Miramontes R, et al. Huntington’s disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization. J Clin Invest. 2021;131:e140723.
Landwehrmeyer GB, Fitzer-Attas CJ, Giuliano JD, Goncalves N, Anderson KE, Cardoso F, et al. Data analytics from enroll-HD, a global clinical research platform for Huntington’s disease. Mov Disord Clin Pract. 2017;4:212–24.
Article
Google Scholar
Tabrizi SJ, Ghosh R, Leavitt BR. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron. 2019;101:801.
Article
CAS
Google Scholar
Chang CY, Ting HC, Liu CA, Su HL, Chiou TW, Lin SZ, et al. Induced pluripotent stem cell (iPSC)-based neurodegenerative disease models for phenotype recapitulation and drug screening. Molecules. 2020;25:2000.
Csobonyeiova M, Polak S, Danisovic L. Recent overview of the use of iPSCs Huntington’s disease modeling and therapy. Int J Mol Sci. 2020;21:2239.
Orth M, Gregory S, Scahill RI, Mayer IS, Minkova L, Kloppel S, et al. Natural variation in sensory-motor white matter organization influences manifestations of Huntington’s disease. Hum Brain Mapp. 2016;37:4615–28.
Article
Google Scholar
Tabrizi SJ, Langbehn DR, Leavitt BR, Roos RA, Durr A, Craufurd D, et al. Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 2009;8:791–801.
Article
Google Scholar
Huntington Study Group. Unified Huntington’s Disease Rating Scale: reliability and consistency. Huntington Study Group. Mov Disord. 1996;11:136–42.
Article
Google Scholar
Penney JB Jr, Vonsattel JP, MacDonald ME, Gusella JF, Myers RH. CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann Neurol. 1997;41:689–92.
Article
Google Scholar
Orth M. European Huntington's Disease N, Handley OJ, Schwenke C, Dunnett S, Wild EJ, Tabrizi SJ, Landwehrmeyer GB: Observing Huntington’s disease: the European Huntington’s Disease Network’s REGISTRY. J Neurol Neurosurg Psychiatry. 2011;82:1409–12.
Article
Google Scholar
Weiss A, Trager U, Wild EJ, Grueninger S, Farmer R, Landles C, et al. Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J Clin Invest. 2012;122:3731–6.
Article
CAS
Google Scholar
Demestre M, Orth M, Fohr KJ, Achberger K, Ludolph AC, Liebau S, et al. Formation and characterisation of neuromuscular junctions between hiPSC derived motoneurons and myotubes. Stem Cell Res. 2015;15:328–36.
Article
CAS
Google Scholar
Andrews S: FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.
Article
CAS
Google Scholar
Oldham MC, Langfelder P, Horvath S. Network methods for describing sample relationships in genomic datasets: application to Huntington’s disease. BMC Syst Biol. 2012;6:63.
Article
Google Scholar
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
Google Scholar
Stephens M. False discovery rates: a new deal. Biostatistics. 2017;18:275–94.
Google Scholar
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128.
Article
Google Scholar
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.
Article
CAS
Google Scholar
Zhang Z. Missing data exploration: highlighting graphical presentation of missing pattern. Ann Transl Med. 2015;3:356.
Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.
Article
Google Scholar
Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian SM, Salomon DR, et al. Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinformatics. 2011;12:322.
Article
CAS
Google Scholar
Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2.
Article
CAS
Google Scholar
Galili T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 2015;31:3718–20.
Article
CAS
Google Scholar
Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse. J Open Source Software. 2019;4:1686.
Article
Google Scholar
Team RC: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2022.
Neueder A: Bioinformatics scripts for the MTM-HD paper. Github. 2022. https://github.com/ANeueder/MTM-HD_data_paper.