Carroll SB, Prud’homme B, Gompel N. Regulating evolution. Sci Am. 2008;298:60–7.
Article
PubMed
Google Scholar
King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science. 1975;188(4184):107–16. https://doi.org/10.1126/science.1090005.
Article
CAS
PubMed
Google Scholar
Wagner GP, Lynch VJ. Evolutionary novelties. Curr Biol. 2010;20:48–52.
Article
CAS
Google Scholar
Romero IG, Ruvinsky I, Gilad Y. Comparative studies of gene expression and the evolution of gene regulation. Nat Rev Genet. 2012;13:505–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reilly SK, Noonan JP. Evolution of gene regulation in humans. Annu Rev Genomics Hum Genet. 2016;17(1):45–67. https://doi.org/10.1146/annurev-genom-090314-045935.
Article
CAS
PubMed
Google Scholar
Stern DL, Orgogozo V. The loci of evolution: how predictable is genetic evolution? Evolution (N Y). 2008;62:2155–77.
Google Scholar
Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet. 2007;8(3):206–16. https://doi.org/10.1038/nrg2063.
Article
CAS
PubMed
Google Scholar
Rebeiz M, Tsiantis M. Enhancer evolution and the origins of morphological novelty. Curr Opin Genet Dev. 2017;45:115–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G. Enhancers: five essential questions. Nat Rev Genet. 2013;14(4):288–95. https://doi.org/10.1038/nrg3458.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubinstein M, de Souza FSJ. Evolution of transcriptional enhancers and animal diversity. Philos Trans R Soc B Biol Sci. 2013;368(1632):20130017. https://doi.org/10.1098/rstb.2013.0017.
Article
CAS
Google Scholar
Villar D, Flicek P, Odom DT. Evolution of transcription factor binding in metazoans-mechanisms and functional implications. Nat Rev Genet. 2014;15:221–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wittkopp PJ. Variable transcription factor binding: a mechanism of evolutionary change. PLoS Biol. 2010;8(3):e1000342. https://doi.org/10.1371/journal.pbio.1000342.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levine M, Cattoglio C, Tjian R. Looping back to leap forward: Transcription enters a new era. Cell. 2014;157(1):13–25. https://doi.org/10.1016/j.cell.2014.02.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoenfelder S, Fraser P. Long-range enhancer–promoter contacts in gene expression control. Nat Rev Genet. 2019;20(8):437–55. https://doi.org/10.1038/s41576-019-0128-0.
Article
CAS
PubMed
Google Scholar
Arnold CD, Gerlach D, Stelzer C, Boryń ŁM, Rath M, Stark A. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science. 2013;339:1074–7.
Article
CAS
PubMed
Google Scholar
Heidari N, Phanstiel DH, He C, Grubert F, Jahanbani F, Kasowski M, et al. Genome-wide map of regulatory interactions in the human genome. Genome Res. 2014;24:1905–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Noonan JP. Regulatory DNAs and the evolution of human development. Curr Opin Genet Dev. 2009;19(6):557–64. https://doi.org/10.1016/j.gde.2009.10.002.
Article
CAS
PubMed
Google Scholar
Blow MJ, McCulley DJ, Li Z, Zhang T, Akiyama JA, Holt A, et al. ChIP-seq identification of weakly conserved heart enhancers. Nat Genet. 2010;42:806–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cotney J, Leng J, Yin J, Reilly SK, Demare LE, Emera D, et al. The evolution of lineage-specific regulatory activities in the human embryonic limb. Cell. 2013;154(1):185–96. https://doi.org/10.1016/j.cell.2013.05.056.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X, Chan YS, et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet. 2010;42:631–4.
Article
CAS
PubMed
Google Scholar
Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A, et al. Five-vertebrate ChlP-seq reveals the evolutionary dynamics of transcription factor binding. Science. 2010;328:1036–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen Y, Yue F, Mc Cleary DF, Ye Z, Edsall L, Kuan S, et al. A map of the cis-regulatory sequences in the mouse genome. Nature. 2012;488:116–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stefflova K, Thybert D, Wilson MD, Streeter I, Aleksic J, Karagianni P, et al. Cooperativity and rapid evolution of cobound transcription factors in closely related mammals. Cell. 2013;154(3):530–40. https://doi.org/10.1016/j.cell.2013.07.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vierstra J, Rynes E, Sandstrom R, Zhang M, Canfield T, Scott Hansen R, et al. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science. 2014;346:1007–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Douglas AT, Hill RE. Variation in vertebrate Cis-regulatory elements in evolution and disease. Transcription. 2014;5(3):e28848. https://doi.org/10.4161/trns.28848.
Article
PubMed
PubMed Central
Google Scholar
Long HK, Prescott SL, Wysocka J. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell. 2016;167(5):1170–87. https://doi.org/10.1016/j.cell.2016.09.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glinsky G, Barakat TS. The evolution of Great Apes has shaped the functional enhancers’ landscape in human embryonic stem cells. Stem Cell Res. 2019;37:101456.
Article
PubMed
Google Scholar
Villar D, Berthelot C, Aldridge S, Rayner TF, Lukk M, Pignatelli M, et al. Enhancer evolution across 20 mammalian species. Cell. 2015;160:554–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berthelot C, Villar D, Horvath JE, Odom DT, Flicek P. Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression. Nat Ecol Evol. 2018;2:152–63.
Article
PubMed
Google Scholar
Dickel DE, Ypsilanti AR, Pla R, Zhu Y, Barozzi I, Mannion BJ, et al. Ultraconserved enhancers are required for normal development. Cell. 2018;172:491–499.e15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Kvon EZ, Visel A, Pennacchio LA, Ovcharenko I. Stable enhancers are active in development, and fragile enhancers are associated with evolutionary adaptation. Genome Biol. 2019;20:140.
Article
PubMed
PubMed Central
CAS
Google Scholar
Eichenlaub MP, Ettwiller L. De novo genesis of enhancers in vertebrates. Plos Biol. 2011;9(11):e1001188. https://doi.org/10.1371/journal.pbio.1001188.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klein JC, Keith A, Agarwal V, Durham T, Shendure J. Functional characterization of enhancer evolution in the primate lineage. Genome Biol. 2018;19:1–13.
Article
CAS
Google Scholar
Trizzino M, Park Y, Holsbach-Beltrame M, Aracena K, Mika K, Caliskan M, et al. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res. 2017;27:1623–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young RS. Lineage-specific genomics: frequent birth and death in the human genome: the human genome contains many lineage-specific elements created by both sequence and functional turnover. BioEssays. 2016;38(7):654–63. https://doi.org/10.1002/bies.201500192.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wells JN, Feschotte C. A field guide to eukaryotic transposable elements. Annu Rev Genet. 2020;54:annurev-genet-040620-022145.
Article
CAS
Google Scholar
de Koning APJ, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. Plos Genet. 2011;7(12):e1002384. https://doi.org/10.1371/journal.pgen.1002384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, Duke S, et al. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature. 2007;447:167–77.
Article
CAS
PubMed
Google Scholar
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. https://doi.org/10.1038/35057062.
Article
CAS
PubMed
Google Scholar
Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520–62.
Article
CAS
PubMed
Google Scholar
Kapusta A, Suh A, Feschotte C. Dynamics of genome size evolution in birds and mammals. Proc Natl Acad Sci. 2017;114(8):E1460–9. https://doi.org/10.1073/pnas.1616702114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526:75–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet. 2008;9:397–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet. 2017;18:71–86.
Article
CAS
PubMed
Google Scholar
Sundaram V, Choudhary MNK, Pehrsson E, Xing X, Fiore C, Pandey M, et al. Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus. Nat Commun. 2017;8:1–12.
Article
CAS
Google Scholar
Sundaram V, Wysocka J. Transposable elements as a potent source of diverse cis-regulatory sequences in mammalian genomes. Philos Trans R Soc Lond B Biol Sci. 2020;375(1795):20190347. https://doi.org/10.1098/rstb.2019.0347.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rebollo R, Romanish MT, Mager DL. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet. 2012;46:21–42.
Article
CAS
PubMed
Google Scholar
Sundaram V, Cheng Y, Ma Z, Li D, Xing X, Edge P, et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 2014;24(12):1963–76. https://doi.org/10.1101/gr.168872.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M, et al. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci. 2007;104(47):18613–8. https://doi.org/10.1073/pnas.0703637104.
Article
PubMed
PubMed Central
Google Scholar
Schmidt D, Schwalie PC, Wilson MD, Ballester B, Gonalves Â, Kutter C, et al. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell. 2012;148:335–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 2016;351:1083–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bourque G, Leong B, Vega VB, Chen X, Yen LL, Srinivasan KG, et al. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 2008;18(11):1752–62. https://doi.org/10.1101/gr.080663.108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacques P-É, Jeyakani J, Bourque G. The majority of primate-specific regulatory sequences are derived from transposable elements. Plos Genet. 2013;9(5):e1003504. https://doi.org/10.1371/journal.pgen.1003504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 2004;428:493–520.
Article
CAS
PubMed
Google Scholar
Lynch VJ, Leclerc RD, May G, Wagner GP. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet. 2011;43(11):1154–9. https://doi.org/10.1038/ng.917.
Article
CAS
PubMed
Google Scholar
Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35(1):445–62. https://doi.org/10.1146/annurev-neuro-060909-153128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164–79. https://doi.org/10.1038/nrg.2016.150.
Article
CAS
PubMed
Google Scholar
Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 2009;72:551–77.
Article
CAS
Google Scholar
Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. Plos Biol. 2011;9:e1000595.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacner LD, King DP, et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998;280(5369):1564–9. https://doi.org/10.1126/science.280.5369.1564.
Article
CAS
PubMed
Google Scholar
Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98(2):193–205. https://doi.org/10.1016/S0092-8674(00)81014-4.
Article
CAS
PubMed
Google Scholar
Menet JS, Pescatore S, Rosbash M. CLOCK: BMAL1 is a pioneer-like transcription factor. Genes Dev. 2014;28:8–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trott AJ, Menet JS. Regulation of circadian clock transcriptional output by CLOCK:BMAL1. Plos Genet. 2018;14:e1007156.
Article
PubMed
PubMed Central
CAS
Google Scholar
Le Martelot G, Claudel T, Gatfield D, Schaad O, Kornmann B, Lo Sasso G, et al. REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis. Plos Biol. 2009;7:e1000181.
Article
PubMed
PubMed Central
CAS
Google Scholar
Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308:1043–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Cho H, Yu RT, Atkins AR, Downes M, Evans RM. Nuclear receptors rock around the clock. EMBO Rep. 2014;15(5):518–28. https://doi.org/10.1002/embr.201338271.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science. 2012;338:349–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sobel JA, Krier I, Andersin T, Raghav S, Canella D, Gilardi F, et al. Transcriptional regulatory logic of the diurnal cycle in the mouse liver. Plos Biol. 2017;15(4):e2001069. https://doi.org/10.1371/journal.pbio.2001069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang B, Everett LJ, Jager J, Briggs E, Armour SM, Feng D, et al. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell. 2014;159(5):1140–52. https://doi.org/10.1016/j.cell.2014.10.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boergesen M, Pedersen TÅ, Gross B, van Heeringen SJ, Hagenbeek D, Bindesbøll C, et al. Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor α in mouse liver reveals extensive sharing of binding sites. Mol Cell Biol. 2012;32(4):852–67. https://doi.org/10.1128/MCB.06175-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature. 2012;485(7396):123–7. https://doi.org/10.1038/nature11048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beytebiere JR, Trott AJ, Greenwell BJ, Osborne CA, Vitet H, Spence J, et al. Tissue-specific BMAL1 cistromes reveal that rhythmic transcription is associated with rhythmic enhancer–enhancer interactions. Genes Dev. 2019;33:294–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang L, Damle SS, Booten S, Singh P, Sabripour M, Hsu J, et al. Partial hepatectomy induced long noncoding RNA inhibits hepatocyte proliferation during liver regeneration. Plos One. 2015;10(7):e0132798. https://doi.org/10.1371/journal.pone.0132798.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110(1-4):462–7. https://doi.org/10.1159/000084979.
Article
CAS
PubMed
Google Scholar
Smit A, Hubley R, Green P. RepeatMasker Open-4.0. 2013. Available from: http://www.repeatmasker.org
Google Scholar
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The Human Genome Browser at UCSC. Genome Res. 2002;12:996–1006.
Article
CAS
PubMed
PubMed Central
Google Scholar
McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28:495–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay LA, Bourque G, et al. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. Plos Genet. 2013;9(4):e1003470. https://doi.org/10.1371/journal.pgen.1003470.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hubley R, Finn RD, Clements J, Eddy SR, Jones TA, Bao W, et al. The Dfam database of repetitive DNA families. Nucleic Acids Res. 2016;44(D1):D81–9. https://doi.org/10.1093/nar/gkv1272.
Article
CAS
PubMed
Google Scholar
Lee IY, Westaway D, Smit AFA, Wang K, Seto J, Chen L, et al. Complete genomic sequence and analysis of the prion protein gene region from three mammalian species. Genome Res. 1998;8(10):1022–37. https://doi.org/10.1101/gr.8.10.1022.
Article
CAS
PubMed
Google Scholar
Giguere V, Tini M, Flock G, Ong E, Evans RM, Otulakowski G. Isoform-specific amino-terminal domains dictate DNA-binding properties of RORα, a novel family of orphan hormone nuclear receptors. Genes Dev. 1994;8:538–53.
Article
CAS
PubMed
Google Scholar
Guillaumond F, Dardente H, Giguère V, Cermakian N. Differential control of Bmal1 circadian transcription by REV-ERB and ROR nuclear receptors. J Biol Rhythms. 2005;20(5):391–403. https://doi.org/10.1177/0748730405277232.
Article
CAS
PubMed
Google Scholar
Shen Q, Bai Y, Chang KCN, Wang Y, Burris TP, Freedman LP, et al. Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer cistrome reveals coordination of LXR and AP1 signaling in keratinocytes. J Biol Chem. 2011;286:14554–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuhn RM, Haussler D, James KW. The UCSC genome browser and associated tools. Brief Bioinform. 2013;14(2):144–61. https://doi.org/10.1093/bib/bbs038.
Article
CAS
PubMed
Google Scholar
Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 2001;15:995–1006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Todd CD, Deniz Ö, Taylor D, Branco MR. Functional evaluation of transposable elements as enhancers in mouse embryonic and trophoblast stem cells. Elife. 2019;8:e44344. https://doi.org/10.7554/eLife.44344.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duhl DMJ, Vrieling H, Miller KA, Wolff GL, Barsh GS. Neomorphic agouti mutations in obese yellow mice. Nat Genet. 1994;8(1):59–65. https://doi.org/10.1038/ng0994-59.
Article
CAS
PubMed
Google Scholar
Morgan HD, Sutherland HGE, Martin DIK, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23(3):314–8. https://doi.org/10.1038/15490.
Article
CAS
PubMed
Google Scholar
Whitelaw E, Martin DIK. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet. 2001;27:361–5.
Article
CAS
PubMed
Google Scholar
Duez H, Staels B. The nuclear receptors Rev-erbs and RORs integrate circadian rhythms and metabolism. Diabetes Vasc Dis Res. 2008;5(2):82–8. https://doi.org/10.3132/dvdr.2008.0014.
Article
Google Scholar
Solt LA, Kojetin DJ, Burris TP. The REV-ERBs and RORs: molecular links between circadian rhythms and lipid homeostasis. Future Med Chem. 2011;3(5):623–38. https://doi.org/10.4155/fmc.11.9.
Article
CAS
PubMed
Google Scholar
Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M, Wesche DJ, et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature. 2015;522(7555):221–46. https://doi.org/10.1038/nature14308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roman AC, Benitez DA, Carvajal-Gonzalez JM, Fernandez-Salguero PM. Genome-wide B1 retrotransposon binds the transcription factors dioxin receptor and Slug and regulates gene expression in vivo. Proc Natl Acad Sci. 2008;105(5):1632–7. https://doi.org/10.1073/pnas.0708366105.
Article
PubMed
PubMed Central
Google Scholar
Simmen MW. Genome-scale relationships between cytosine methylation and dinucleotide abundances in animals. Genomics. 2008;92:33–40.
Article
CAS
PubMed
Google Scholar
Bird AP. DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res. 1980;8(7):1499–504. https://doi.org/10.1093/nar/8.7.1499.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci. 1993;90:11995–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ichiyanagi K, Li Y, Watanabe T, Ichiyanagi T, Fukuda K, Kitayama J, et al. Locus- and domain-dependent control of DNA methylation at mouse B1 retrotransposons during male germ cell development. Genome Res. 2011;21:2058–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Molaro A, Falciatori I, Hodges E, Aravin AA, Marran K, Rafii S, et al. Two waves of de novo methylation during mouse germ cell development. Genes Dev. 2014;28(14):1544–9. https://doi.org/10.1101/gad.244350.114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010;463:1101–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zemojtel T, Kielbasa SM, Arndt PF, Behrens S, Bourque G, Vingron M. CpG deamination creates transcription factor-binding sites with high efficiency. Genome Biol Evol. 2011;3:1304–11. https://doi.org/10.1093/gbe/evr107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zemojtel T, Kielbasa SM, Arndt PF, Chung HR, Vingron M. Methylation and deamination of CpGs generate p53-binding sites on a genomic scale. Trends Genet. 2009;25(2):63–6. https://doi.org/10.1016/j.tig.2008.11.005.
Article
CAS
PubMed
Google Scholar
Emera D, Wagner GP. Transformation of a transposon into a derived prolactin promoter with function during human pregnancy. Proc Natl Acad Sci. 2012;109:11246–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cannavò E, Khoueiry P, Garfield DA, Geeleher P, Zichner T, Gustafson EH, et al. Shadow enhancers are pervasive features of developmental regulatory networks. Curr Biol. 2016;26:38–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Choudhary MNK, Friedman RZ, Wang JT, Jang HS, Zhuo X, Wang T. Co-opted transposons help perpetuate conserved higher-order chromosomal structures. Genome Biol. 2020;21:16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunn-Fletcher CE, Muglia LM, Pavlicev M, Wolf G, Sun M-A, Hu Y-C, et al. Anthropoid primate–specific retroviral element THE1B controls expression of CRH in placenta and alters gestation length. PLOS Biol. 2018;16(9):e2006337. https://doi.org/10.1371/journal.pbio.2006337.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuong EB, Rumi MAK, Soares MJ, Baker JC. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet. 2013;45:325–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pi W, Zhu X, Wu M, Wang Y, Fulzele S, Eroglu A, et al. Long-range function of an intergenic retrotransposon. Proc Natl Acad Sci. 2010;107(29):12992–7. https://doi.org/10.1073/pnas.1004139107.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Romanish MT, Mager DL. Distributions of transposable elements reveal hazardous zones in mammalian introns. PLoS Comput Biol. 2011;7(5):e1002046. https://doi.org/10.1371/journal.pcbi.1002046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Notwell JH, Chung T, Heavner W, Bejerano G. A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat Commun. 2015;6(1):6644. https://doi.org/10.1038/ncomms7644.
Article
CAS
PubMed
Google Scholar
Lowe CB, Bejerano G, Haussler D. Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proc Natl Acad Sci. 2007;104:8005–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bejerano G, Lowe CB, Ahituv N, King B, Siepel A, Salama SR, et al. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature. 2006;441(7089):87–90. https://doi.org/10.1038/nature04696.
Article
CAS
PubMed
Google Scholar
Nakanishi A, Kobayashi N, Suzuki-Hirano A, Nishihara H, Sasaki T, Hirakawa M, et al. A SINE-derived element constitutes a unique modular enhancer for mammalian diencephalic Fgf8. Plos One. 2012;7:e43785.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishihara H, Kobayashi N, Kimura-Yoshida C, Yan K, Bormuth O, Ding Q, et al. Coordinately co-opted multiple transposable elements constitute an enhancer for wnt5a expression in the mammalian secondary palate. Plos Genet. 2016;12(10):e1006380. https://doi.org/10.1371/journal.pgen.1006380.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishihara H, Smit AFA, Okada N. Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res. 2006;16(7):864–74. https://doi.org/10.1101/gr.5255506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell. 2012;150(1):29–38. https://doi.org/10.1016/j.cell.2012.05.031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lam DD, de Souza FSJ, Nasif S, Yamashita M, López-Leal R, Otero-Corchon V, et al. Partially redundant enhancers cooperatively maintain mammalian Pomc expression above a critical functional threshold. Plos Genet. 2015;11:e1004935.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17(1):10. https://doi.org/10.14806/ej.17.1.200.
Article
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25. https://doi.org/10.1186/gb-2009-10-3-r25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feng J, Liu T, Qin B, Zhang Y, Liu XS. Identifying ChIP-seq enrichment using MACS. Nat Protoc. 2012;7:1728–40.
Article
CAS
PubMed
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014;42:W187–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
Article
PubMed
PubMed Central
Google Scholar
Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25(9):1189–91. https://doi.org/10.1093/bioinformatics/btp033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey TL. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics. 2011;27(12):1653–9. https://doi.org/10.1093/bioinformatics/btr261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27(7):1017–8. https://doi.org/10.1093/bioinformatics/btr064.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2 - approximately maximum-likelihood trees for large alignments. Plos One. 2010;5:e9490.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu G, Lam TT-Y, Zhu H, Guan Y. Two methods for mapping and visualizing associated data on phylogeny using Ggtree. Mol Biol Evol. 2018;35(12):3041–3. https://doi.org/10.1093/molbev/msy194.
Article
CAS
PubMed
PubMed Central
Google Scholar