Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ. Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci USA. 2005; 102(38):13544–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S-Y, Volsky DJ. PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics. 2005; 6(1):144.
Article
PubMed
PubMed Central
CAS
Google Scholar
Al-Shahrour F, Díaz-Uriarte R, Dopazo J. Discovering molecular functions significantly related to phenotypes by combining gene expression data and biological information. Bioinformatics. 2005; 21(13):2988–93.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, Jassal B, Jupe S, Matthews L, May B, Palatnik S, Rothfels K, Shamovsky V, Song H, Williams M, Birney E, Hermjakob H, Stein L, D’Eustachio P. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014; 42(D1):472–7.
Article
CAS
Google Scholar
BioCarta. BioCarta - Charting Pathways of Life. Technical report, BioCarta. 2004.
Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009; 37(Suppl 1):674–9.
Article
CAS
Google Scholar
Pico AR, Kelder T, Van Iersel MP, Hanspers K, Conklin BR, Evelo C. Wikipathways: pathway editing for the people. PLoS Biol. 2008; 6(7):184.
Article
CAS
Google Scholar
Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003; 13(9):2129–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitra K, Carvunis A. -R., Ramesh SK, Ideker T. Integrative approaches for finding modular structure in biological networks. Nat Rev Genet. 2013; 14(10):719–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khatri P, Drăghici S. Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics. 2005; 21(18):3587–95.
Article
CAS
PubMed
Google Scholar
Rhee YS, Wood V, Dolinski K, Drăghici S. Use and misuse of the Gene Ontology annotations. Nat Rev Genet. 2008; 9(7):509–15.
Article
CAS
PubMed
Google Scholar
Mitrea C, Taghavi Z, Bokanizad B, Hanoudi S, Tagett R, Donato M, Voichiţa C, Drăghici S. Methods and approaches in the topology-based analysis of biological pathways. Front Physiol. 2013; 4:278.
Article
PubMed
PubMed Central
Google Scholar
Fisher RA. The design of experiments. London: Oliver and Boyd; 1951.
Google Scholar
Fisher LD, van Belle G. Biostatistics: a methodology for health sciences. New York: Wiley; 1993.
Google Scholar
Khatri P, Drăghici S, Ostermeier GC, Krawetz SA. Profiling gene expression using Onto-Express. Genomics. 2002; 79(2):266–70.
Article
CAS
PubMed
Google Scholar
Drăghici S, Khatri P, Martins RP, Ostermeier GC, Krawetz SA. Global functional profiling of gene expression. Genomics. 2003; 81(2):98–104.
Article
PubMed
CAS
Google Scholar
Dahlquist K, Salomonis N, Vranizan K, Lawlor S, Conklin B. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet. 2002; 31(1):19–20.
Article
CAS
PubMed
Google Scholar
Castillo-Davis CI, Hartl DL. GeneMerge-post-genomic analysis, data mining, and hypothesis testing. Bioinformatics. 2003; 19(7):891–2.
Article
CAS
PubMed
Google Scholar
Hosack DA, Dennis Jr. G, Sherman BT, Lane HC, Lempicki RA. Identifying biological themes within lists of genes with EASE. Genome Biol. 2003; 4(6):4.
Article
Google Scholar
Berriz GF, King OD, Bryant B, Sander C, Roth FP. Characterizing gene sets with FuncAssociate. Bioinformatics. 2003; 19(18):2502–4.
Article
CAS
PubMed
Google Scholar
Al-Shahrour F, Diaz-Uriarte R, Dopazo J. FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics. 2004; 20(4):578–80.
Article
CAS
PubMed
Google Scholar
Beißbarth T, Speed TP. GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics. 2004; 20:1464–5.
Article
PubMed
CAS
Google Scholar
Martin D, Brun C, Remy E, Mouren P, Thieffry D, Jacq B. GOToolBox: functional analysis of gene datasets based on Gene Ontology. Genome Biol. 2004; 5:101.
Article
Google Scholar
Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003; 4(4):28.
Article
Google Scholar
Zeeberg B, Qin H, Narasimhan S, Sunshine M, Cao H, Kane D, Reimers M, Stephens R, Bryant D, Burt S, Elnekave E, Hari D, Wynn T, Cunningham-Rundles C, Stewart D, Nelson D, Weinstein J. High-throughput GoMiner, an ’industrial-strength’ integrative gene ontology tool for interpretation of multiple-microarray experiments, with application to studies of Common Variable Immune Deficiency (CVID). BMC Bioinformatics. 2005; 6(1):168.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008; 4(1):44.
Article
CAS
Google Scholar
Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013; 41(W1):77–83.
Article
CAS
Google Scholar
Wang J, Liao Y. WebGestaltR: the R version of WebGestalt. 2019. R package version 0.3.1. https://CRAN.R-project.org/package=WebGestaltR. Accessed 15 Apr 2019.
Ackermann M, Strimmer K. A general modular framework for gene set enrichment analysis. BMC Bioinformatics. 2009; 10(1):1.
Article
CAS
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005; 102(43):15545–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breslin T, Eden P, Krogh M. Comparing functional annotation analyses with Catmap. BMC Bioinformatics. 2004; 5(1):193.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC. A global test for groups of genes: testing association with a clinical outcome. Bioinformatics. 2004; 20(1):93–99.
Article
CAS
PubMed
Google Scholar
Barry WT, Nobel AB, Wright FA. Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics. 2005; 21(9):1943–9.
Article
CAS
PubMed
Google Scholar
Efron B, Tibshirani R. On testing the significance of sets of genes. Ann Appl Stat. 2007; 1(1):107–29.
Article
Google Scholar
Jiang Z, Gentleman R. Extensions to gene set enrichment. Bioinformatics. 2007; 23(3):306–13.
Article
PubMed
CAS
Google Scholar
Tarca AL, Drǎghici S, Bhatti G, Romero R. Down-weighting overlapping genes improves gene set analysis. BMC Bioinformatics. 2012; 13(1):136.
Article
PubMed
PubMed Central
Google Scholar
Kong SW, Pu WT, Park PJ. A multivariate approach for integrating genome-wide expression data and biological knowledge. Bioinformatics. 2006; 22(19):2373–80.
Article
CAS
PubMed
Google Scholar
Henegar C, Cancello R, Rome S, Vidal H, Clément K, Zucker J-D. Clustering biological annotations and gene expression data to identify putatively co-regulated biological processes. J Bioinforma Comput Biol. 2006; 4(04):833–52.
Article
CAS
Google Scholar
Dinu I, Potter JD, Mueller T, Liu Q, Adewale AJ, Jhangri GS, Einecke G, Famulski KS, Halloran P, Yasui Y. Improving gene set analysis of microarray data by SAM-GS. BMC Bioinformatics. 2007; 8(1):242.
Article
PubMed
PubMed Central
CAS
Google Scholar
Massey Jr FJ. The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc. 1951; 46(253):68–78.
Article
Google Scholar
Wilcoxon F. Individual comparisons by ranking methods. Biometrics. 1945; 1(6):80–83.
Article
Google Scholar
Drǎghici S, Khatri P, Tarca AL, Amin K, Done A, Voichiţa C, Georgescu C, Romero R. A systems biology approach for pathway level analysis. Genome Res. 2007; 17(10):1537–45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Khatri P, Drăghici S, Tarca AL, Hassan SS, Romero R. A system biology approach for the steady-state analysis of gene signaling networks. In: CIARP’07 Proceedings of the 12th Iberoamerican Conference on Progress in Pattern Recognition, Image Analysis and Applications. Valparaiso: ACM: 2007. p. 32–41.
Google Scholar
Tarca AL, Drǎghici S, Khatri P, Hassan SS, Mittal P, Kim J-s, Kim CJ, Kusanovic JP, Romero R. A novel signaling pathway impact analysis. Bioinformatics. 2009; 25(1):75–82.
Article
CAS
PubMed
Google Scholar
Shojaie A, Michailidis G. Analysis of gene sets based on the underlying regulatory network. J Comput Biol. 2009; 16(3):407–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glaab E, Baudot A, Krasnogor N, Valencia A. TopoGSA: network topological gene set analysis. Bioinformatics. 2010; 26(9):1271–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Massa MS, Chiogna M, Romualdi C. Gene set analysis exploiting the topology of a pathway. BMC Syst Biol. 2010; 4(1):121.
Article
PubMed
PubMed Central
Google Scholar
Hung J-H, Whitfield TW, Yang T-H, Hu Z, Weng Z, DeLisi C. Identification of functional modules that correlate with phenotypic difference: the influence of network topology. Genome Biol. 2010; 11(2):23.
Article
CAS
Google Scholar
Greenblum S, Efroni S, Schaefer C, Buetow K. The PathOlogist: an automated tool for pathway-centric analysis. BMC Bioinformatics. 2011; 12(1):133.
Article
PubMed
PubMed Central
Google Scholar
Geistlinger L, Csaba G, Küffner R, Mulder N, Zimmer R. From sets to graphs: towards a realistic enrichment analysis of transcriptomic systems. Bioinformatics. 2011; 27(13):366–73.
Article
CAS
Google Scholar
Gu Z, Liu J, Cao K, Zhang J, Wang J. Centrality-based pathway enrichment: a systematic approach for finding significant pathways dominated by key genes. BMC Syst Biol. 2012; 6(1):56.
Article
PubMed
PubMed Central
Google Scholar
Gu Z, Wang J. CePa: an R package for finding significant pathways weighted by multiple network centralities. Bioinformatics. 2013; 29(5):658–60.
Article
CAS
PubMed
Google Scholar
Dutta B, Wallqvist A, Reifman J. PathNet: a tool for pathway analysis using topological information. Source Code Biol Med. 2012; 7(1):10.
Article
PubMed
PubMed Central
Google Scholar
Voichiţa C, Donato M, Drǎghici S. Incorporating gene significance in the impact analysis of signaling pathways. In: Machine learning and applications (ICMLA), 2012 11th International Conference On, vol. 1. Boca Raton: IEEE: 2012. p. 126–31.
Google Scholar
Nguyen T, Draghici S. BLMA: a package for bi-level meta-analysis. Bioconductor. 2017. Bioconductor. R package.
Nguyen T, Tagett R, Donato M, Mitrea C, Draghici S. A novel bi-level meta-analysis approach-applied to biological pathway analysis. Bioinformatics. 2016; 32(3):409–16.
Article
CAS
PubMed
Google Scholar
Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol. 2012; 8(2):1002375.
Article
CAS
Google Scholar
Bayerlova M, Jung K, Kramer F, Klemm F, Bleckmann A, Beißbarth T. Comparative study on gene set and pathway topology-based enrichment methods. BMC Bioinformatics. 2015; 16(1):334.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tarca AL, Bhatti G, Romero R. A comparison of gene set analysis methods in terms of sensitivity, prioritization and specificity. PLoS ONE. 2013; 8(11):79217.
Article
CAS
Google Scholar
Wadi L, Meyer M, Weiser J, D Stein L, Reimand J. Impact of outdated gene annotations on pathway enrichment analysis. Nat Methods. 2016; 13:705–6. https://doi.org/10.1038/nmeth.3963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen T, Mitrea C, Tagett R, Draghici S. DANUBE: Data-driven meta-ANalysis using UnBiased Empirical distributions - applied to biological pathway analysis. Proc IEEE. 2017; 105(3):496–515. https://doi.org/10.1109/JPROC.2015.2507119.
Article
Google Scholar
Nguyen T, Mitrea C, Draghici S. Network-based approaches for pathway level analysis. Curr Protoc Bioinform. 2018; 61(1):8–25.
Article
Google Scholar
Tarca AL, Khatri P, Draghici S. SPIA: signaling pathway impact analysis (SPIA) using combined evidence of pathway over-representation and unusual signaling perturbations. 2013. R package version 2.14.0. http://bioinformatics.oxfordjournals.org/cgi/reprint/btn577v1.
Voichita C, Draghici S. ROntoTools: R Onto-Tools suite. R package version 1.2.0. Accessed 16 May 2019.
Wu D, Smyth GK. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 2012; 40(17):133.
Article
CAS
Google Scholar
Tarca AL. PADOG: pathway analysis with down-weighting of overlapping genes (PADOG). R package. https://www.bioconductor.org/packages/release/bioc/html/PADOG.html.
Ansari S, Donato M, Saberian N, Draghici S. An approach to infer putative disease-specific mechanisms using neighboring gene networks. Bioinformatics. 2017; 33(13):1987–94. Accessed 23 Jun 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang YH, Dudoit S. Bioconductor multtest package. 2002. www.bioconductor.org.
Fisher RA. Statistical methods for research workers. Edinburgh: Oliver & Boyd; 1925.
Google Scholar
Barton SJ, Crozier SR, Lillycrop KA, Godfrey KM, Inskip HM. Correction of unexpected distributions of P values from analysis of whole genome arrays by rectifying violation of statistical assumptions. BMC Genomics. 2013; 14(1):161.
Article
PubMed
PubMed Central
Google Scholar
Fodor AA, Tickle TL, Richardson C. Towards the uniform distribution of null P values on Affymetrix microarrays. Genome Biol. 2007; 8(5):69.
Article
CAS
Google Scholar
Ahsan S, Drăghici S. Identifying significantly impacted pathways and putative mechanisms with iPathwayGuide. Curr Protoc Bioinform. 2017; 57:7–15.
Article
Google Scholar
Krämer A, Green J, Pollard Jr J, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2013; 30(4):523–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Drăghici S, Khatri P, Eklund AC, Szallasi Z. Reliability and reproducibility issues in DNA microarray measurements. Trends Genet. 2006; 22(2):101–9.
Article
PubMed
CAS
Google Scholar
Tan PK, Downey TJ, Spitznagel Jr EL, Xu P, Fu D, Dimitrov DS, Lempicki RA, Raaka BM, Cam MC. Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res. 2003; 31(19):5676–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ein-Dor L, Kela I, Getz G, Givol D, Domany E. Outcome signature genes in breast cancer: is there a unique set?Bioinformatics. 2005; 21(2):171–8.
Article
CAS
PubMed
Google Scholar
Advaita Corporation. Pathway-Guide software. http://www.advaitabio.com/products.html.
Pearson K. Contributions to the mathematical theory of evolution. ii. skew variation in homogeneous material. Phil Trans R Soc London. 1895; 186(Part I):343–424. Accessed 20 Aug 2019.
Google Scholar