2018 - Hunger Map. World food program. United Nations world food Programme - fighting hunger worldwide. 2018. https://www.wfp.org/content/2018-hunger-map. Accessed 30 Oct 2018.
United Nations. World population Prospects 2015. https://population.un.org/wpp/Publications/Files/Key_Findings_WPP_2015.pdf. Accessed 30 Oct 2018.
Alexandratos N, Bruinsma J. World agriculture towards 2030/2050: the 2012 revision. 2030. http://www.fao.org/fileadmin/templates/esa/Global_persepctives/world_ag_2030_50_2012_rev.pdf. Accessed 30 Oct 2018.
Lowder SK, Skoet J, Raney T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Dev. 2016;87:16–29 https://doi.org/10.1016/j.worlddev.2015.10.041.
Article
Google Scholar
FAO. The Global Dairy Sector: Facts. https://www.fil-idf.org/wp-content/uploads/2016/12/FAO-Global-Facts-1.pdf. Accessed 30 Oct 2018.
FAO. Livestock’s long shadow. 2006. http://www.fao.org/docrep/010/a0701e/a0701e00.HTM. Accessed 30 Oct 2018.
Global Agenda for Sustainable Livestock. Towards sustainable livestock. Livestock in development. 2014. http://www.livestockdialogue.org/fileadmin/templates/res_livestock/docs/2014_Colombia/2014_Towards_Sustainable_Livestock-dec.pdf. Accessed 30 Oct 2018.
IPCC - SR15. http://www.ipcc.ch/report/sr15/. Accessed 30 Oct 2018.
White RR, Hall MB. Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc Natl Acad Sci U S A. 2017;114:E10301–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Haan C, Dubern E, Garancher B, Quintero C. Fragility, conflict, and violence. Cross-cutting solutions area. A road to stability? Pastoralism development in the Sahel. 2016. http://documents.worldbank.org/curated/en/586291468193771160/pdf/105197-WP-PUBLIC-PUBDATE-5-16-2016.pdf. Accessed 30 Oct 2018.
Beddington J. Food, energy, water and the climate: a perfect storm of global events? http://webarchive.nationalarchives.gov.uk/20121206120858/http://www.bis.gov.uk/assets/goscience/docs/p/perfect-storm-paper.pdf. Accessed 30 Oct 2018.
Government Office For Science. The future of food and farming: challenges and choices for global sustainability. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/288329/11-546-future-of-food-and-farming-report.pdf. Accessed 30 Oct 2018.
van der Steen HAM, Prall GFW, Plastow GS. Application of genomics to the pork industry. J Anim Sci. 2004;83:E1–8 https://academic.oup.com/jas/article-abstract/83/suppl_13/E1/4790535.
Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–29.
CAS
PubMed
PubMed Central
Google Scholar
Haley CS, Visscher PM. Strategies to utilize marker-quantitative trait loci associations. J Dairy Sci. 1998;81:85–97 https://doi.org/10.3168/jds.S0022-0302(98)70157-2.
Article
CAS
PubMed
Google Scholar
Meuwissen T, Hayes B, Goddard M. Accelerating improvement of livestock with genomic selection. Annu Rev Anim Biosci. 2013;1:221–37.
Article
PubMed
CAS
Google Scholar
Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, et al. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716 http://www.nature.com/doifinder/10.1038/nature03154.
Article
CAS
Google Scholar
Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature. 2012;491:393–8 http://www.nature.com/doifinder/10.1038/nature11622.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bovine Genome Sequencing and Analysis Consortium, Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, et al. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science. 2009;324:522–8 http://science.sciencemag.org/content/324/5926/522.
Article
CAS
Google Scholar
Andersson L, Archibald AL, Bottema CD, Brauning R, Burgess SC, Burt DW, et al. Coordinated international action to accelerate genome-to-phenome with FAANG, the functional annotation of animal genomes project. Genome Biol. 2015;16:57 http://genomebiology.com/2015/16/1/57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Macqueen DJ, Primmer CR, Houston RD, Nowak BF, Bernatchez L, Bergseth S, et al. Functional annotation of all salmonid genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture. BMC Genomics. 2017;18:484 http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-3862-8.
Article
PubMed
PubMed Central
Google Scholar
Tuggle CK, Giuffra E, White SN, Clarke L, Zhou H, Ross PJ, et al. GO-FAANG meeting: a gathering on functional annotation of animal genomes. Anim Genet. 2016;47:528–33 https://doi.org/10.1111/age.12466.
Article
PubMed
PubMed Central
Google Scholar
Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet. 2017;49:643–50 http://www.nature.com/doifinder/10.1038/ng.3802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sus scrofa 11.1 [https://www.ncbi.nlm.nih.gov/genome/84]. Accessed 30 Oct 2018.
Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genomics. 2013;14:59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Houston RD, Taggart JB, Cézard T, Bekaert M, Lowe NR, Downing A, et al. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genomics. 2014;15:90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Freeman TC, Ivens A, Baillie JK, Beraldi D, Barnett MW, Dorward D, et al. A gene expression atlas of the domestic pig. BMC Biol. 2012;10:90.
Article
PubMed
PubMed Central
Google Scholar
Robert C, Fuentes-Utrilla P, Troup K, Loecherbach J, Turner F, Talbot R, et al. Design and development of exome capture sequencing for the domestic pig (Sus scrofa). BMC Genomics. 2014;15:550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Clark EL, Bush SJ, McCulloch MEB, Farquhar IL, Young R, Lefevre L, et al. A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genet. 2017; https://doi.org/10.1371/journal.pgen.100699713(9):e1006997.
Ramos AM, Crooijmans RPMA, Affara NA, Amaral AJ, Archibald AL, Beever JE, et al. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One. 2009;4:e6524 http://dx.plos.org/10.1371/journal.pone.0006524.
Article
PubMed
PubMed Central
CAS
Google Scholar
Watson M. Illuminating the future of DNA sequencing. Genome Biol. 2014;15:108.
Article
PubMed
PubMed Central
Google Scholar
Loman NJ, Watson M. Successful test launch for nanopore sequencing. Nat Methods. 2015;12:303–4 http://www.nature.com/doifinder/10.1038/nmeth.3327.
Article
CAS
PubMed
Google Scholar
Florini JR, Ewton DZ, Coolican SA. Growth hormone and the insulin-like growth factor system in myogenesis. Endocr Rev. 1996;17:481–517 https://doi.org/10.1210/edrv-17-5-481.
CAS
PubMed
Google Scholar
Van Laere A-S, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature. 2003;425:832–6 http://www.nature.com/articles/nature02064.
Article
CAS
PubMed
Google Scholar
Pursel VG, Hammer RE, Bolt DJ, Palmiter RD, Brinster RL. Expression of growth hormone transgenes in swine. https://www.poultryscience.org/docs/pba/1952-2003/1990/1990%20Pursel.pdf. Accessed 30 Oct 2018.
Pursel VG, Wall RJ, Mitchell AD, Elsasser TH, Solomon MB, Coleman ME, et al. Expression of insulin-like growth factor-I in skeletal muscle of transgenic swine. 1999. https://the-eye.eu/public/Books/Medical/texts/%2110trans.pdf. Accessed 30 Oct 2018.
Google Scholar
Pursel VG, Pinkert CA, Miller KF, Bolt DJ, Campbell RG, Palmiter RD, et al. Genetic engineering of livestock. Science. 1989;244:1281–8.
Article
CAS
PubMed
Google Scholar
Waltz E. First genetically engineered salmon sold in Canada. Nature. 2017;548:148 http://www.nature.com/doifinder/10.1038/nature.2017.22116.
Article
CAS
PubMed
Google Scholar
Lai L, Kang JX, Li R, Wang J, Witt WT, Yong HY, et al. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol. 2006;24:435–6 http://www.nature.com/articles/nbt1198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiester A. Why the omega-3 piggy should not go to market. Nat Biotechnol. 2006;24:1472–3 http://www.nature.com/articles/nbt1206-1472.
Article
CAS
PubMed
Google Scholar
Zhang P, Zhang Y, Dou H, Yin J, Chen Y, Pang X, et al. Handmade cloned transgenic piglets expressing the nematode fat-1 gene. Cell Reprogram. 2012;14:258–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Pang D, Yuan T, Li Z, Li Z, Zhang M, et al. N-3 polyunsaturated fatty acids attenuates triglyceride and inflammatory factors level in hfat-1 transgenic pigs. Lipids Health Dis. 2016;15:89 https://doi.org/10.1186/s12944-016-0259-7.
Li M, Ouyang H, Yuan H, Li J, Xie Z, Wang K, et al. Site-specific Fat-1 knock-in enables significant decrease of n-6PUFAs/n-3PUFAs ratio in pigs. Genetics. 2018;8:1747–54.
Google Scholar
Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, et al. Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol. 2001;19:741–5 http://www.nature.com/articles/nbt0801_741.
Article
CAS
PubMed
Google Scholar
Zhang X, Li Z, Yang H, Liu D, Cai G, Li G, et al. Novel transgenic pigs with enhanced growth and reduced environmental impact. elife. 2018;7 https://doi.org/10.7554/eLife.34286.
USDA ERS - Impacts of the 2014–2015 highly pathogenic avian influenza outbreak on the U.S. poultry sector. https://www.ers.usda.gov/publications/pub-details/?pubid=86281. Accessed 30 Oct 2018.
Donatelli I, Castrucci MR, De Marco MA, Delogu M, Webster RG. Human–animal interface: the case for influenza interspecies transmission. Adv Exp Med Biol. 2016;972:17–33.
Article
Google Scholar
Lyall J, Irvine RM, Sherman A, McKinley TJ, Nunez A, Purdie A, et al. Suppression of avian influenza transmission in genetically modified chickens. Science. 2011;331:223–6.
Article
CAS
PubMed
Google Scholar
Luo G, Danetz S, Krystal M. Inhibition of influenza viral polymerases by minimal viral RNA decoys. J Gen Virol. 1997;78:2329–33.
Article
CAS
PubMed
Google Scholar
Maga EA, Cullor JS, Smith W, Anderson GB, Murray JD. Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathog Dis. 2006;3:384–92.
Article
CAS
PubMed
Google Scholar
Maga EA, Sargent RG, Zeng H, Pati S, Zarling DA, Oppenheim SM, et al. Increased efficiency of transgenic livestock production. Transgenic Res. 2003;12:485–96.
Article
CAS
PubMed
Google Scholar
Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, et al. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol. 2005;23:445–51.
Article
CAS
PubMed
Google Scholar
Grobet L, Royo Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet. 1997;17:71–4.
Article
CAS
PubMed
Google Scholar
Kambadur R, Sharma M, Smith TP, Bass JJ. Mutations in myostatin (GDF8) in double-muscled Belgian blue and Piedmontese cattle. Genome Res. 1997;7:910–6.
Article
CAS
PubMed
Google Scholar
Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet. 2006;38:813–8.
Article
CAS
PubMed
Google Scholar
Proudfoot C, Carlson DF, Huddart R, Long CR, Pryor JH, King TJ, et al. Genome edited sheep and cattle. Transgenic Res. 2015;24:147–53.
Article
CAS
PubMed
Google Scholar
Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F. dos Santos-Neto PC, et al. efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One. 2015;10:e0136690. https://doi.org/10.1371/journal.pone.0136690.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Niu Y, Zhou J, Zhu H, Ma B, Yu H, et al. CRISPR/Cas9-mediated MSTN disruption and heritable mutagenesis in goats causes increased body mass. Anim Genet. 2018;49:43–51 https://doi.org/10.1111/age.12626.
Article
CAS
PubMed
Google Scholar
Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A, Miller M, et al. Generation of myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Sci Rep. 2017;7:7301 http://www.nature.com/articles/s41598-017-07223-7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kang J-D, Kim S, Zhu H-Y, Jin L, Guo Q, Li X-C, et al. Generation of cloned adult muscular pigs with myostatin gene mutation by genetic engineering. RSC Adv. 2017;7:12541–9 https://doi.org/10.1039/C6RA28579A.
Article
CAS
Google Scholar
Wang K, Tang X, Xie Z, Zou X, Li M, Yuan H, et al. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs. Transgenic Res. 2017;26:799–805 https://doi.org/10.1007/s11248-017-0044-z.
Article
CAS
PubMed
Google Scholar
Cai C, Qian L, Jiang S, Sun Y, Wang Q, Ma D, et al. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs. Oncotarget. 2017;8:34911–22 https://doi.org/10.18632/oncotarget.16822.
Bi Y, Hua Z, Liu X, Hua W, Ren H, Xiao H, et al. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep. 2016;6:31729 http://www.nature.com/articles/srep31729.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao S, Fujimura T, Matsunari H, Sakuma T, Nakano K, Watanabe M, et al. Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Mol Reprod Dev. 2016;83:61–70 https://doi.org/10.1002/mrd.22591.
Article
PubMed
CAS
Google Scholar
Wang K, Ouyang H, Xie Z, Yao C, Guo N, Li M, et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep. 2015;5:16623 http://www.nature.com/articles/srep16623.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cyranoski D. Super-muscly pigs created by small genetic tweak. Nature. 2015;523:13–4 http://www.nature.com/doifinder/10.1038/523013a.
Article
CAS
PubMed
Google Scholar
Kang Q, Hu Y, Zou Y, Hu W, Li L, Chang F, et al. Proceedings, 10th World Congress of Genetics Applied to Livestock Production. Improving pig genetic resistance and muscle production through molecular biology. https://www.asas.org/docs/default-source/wcgalp-proceedings-oral/362_paper_10607_manuscript_1526_0.pdf?sfvrsn=2. Accessed 30 Oct 2018.
Matika O, Robledo D, Pong-Wong R, Bishop SC, Riggio V, Finlayson H, et al. Balancing selection at a premature stop mutation in the myostatin gene underlies a recessive leg weakness syndrome in pigs. bioRxiv. 2018:442012 https://doi.org/10.1101/442012.
Welfare implications of dehorning and disbudding cattle. 2014. https://www.avma.org/KB/Resources/LiteratureReviews/Pages/Welfare-Implications-of-Dehorning-and-Disbudding-Cattle.aspx. Accessed 30 Oct 2018.
Gottardo F, Nalon E, Contiero B, Normando S, Dalvit P, Cozzi G. The dehorning of dairy calves: practices and opinions of 639 farmers. J Dairy Sci. 2011;94:5724–34.
Article
CAS
PubMed
Google Scholar
Thompson NM, Widmar NO, Schutz MM, Cole JB, Wolf CA. Economic considerations of breeding for polled dairy cows versus dehorning in the United States. J Dairy Sci. 2017;100:4941–52 https://doi.org/10.3168/jds.2016-12099.
Article
CAS
PubMed
Google Scholar
Medugorac I, Seichter D, Graf A, Russ I, Blum H, Göpel KH, et al. Bovine polledness – an autosomal dominant trait with allelic heterogeneity. PLoS One. 2012;7:e39477 https://doi.org/10.1371/journal.pone.0039477.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rothammer S, Capitan A, Mullaart E, Seichter D, Russ I, Medugorac I. The 80-kb DNA duplication on BTA1 is the only remaining candidate mutation for the polled phenotype of Friesian origin. Genet Sel Evol. 2014;46:44 https://doi.org/10.1186/1297-9686-46-44.
Article
CAS
Google Scholar
Carlson DF, Lancto CA, Zang B, Kim E-S, Walton M, Oldeschulte D, et al. Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol. 2016;34:479–81 http://www.nature.com/articles/nbt.3560.
Article
CAS
PubMed
Google Scholar
Sonstegard TS, Carlson D, Lancto CA, Fahrenkrug SC. Precision animal breeding as a sustainable, non-GMO solution for improving animal production and welfare. 2016. https://www.semanticscholar.org/paper/Precision-Animal-Breeding-as-a-Sustainable-%2C-for-Sonstegard-Carlson/f313ec14d15a3be1f8fa6475485308dfe1dd0522. Accessed 30 Oct 2018.
Google Scholar
Große-Brinkhaus C, Storck LC, Frieden L, Neuhoff C, Schellander K, Looft C, et al. Genome-wide association analyses for boar taint components and testicular traits revealed regions having pleiotropic effects. BMC Genet. 2015;16:36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rowe SJ, Karacaören B, de Koning D-J, Lukic B, Hastings-Clark N, Velander I, et al. Analysis of the genetics of boar taint reveals both single SNPs and regional effects. BMC Genomics. 2014;15:424 https://doi.org/10.1186/1471-2164-15-424.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wargelius A, Leininger S, Skaftnesmo KO, Kleppe L, Andersson E, Taranger GL, et al. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep. 2016;6:21284 http://www.nature.com/articles/srep21284.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park K-E, Kaucher AV, Powell A, Waqas MS, Sandmaier SES, Oatley MJ, et al. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci Rep. 2017;7:40176 http://www.nature.com/articles/srep40176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor L, Carlson DF, Nandi S, Sherman A, Fahrenkrug SC, McGrew MJ. Efficient TALEN-mediated gene targeting of chicken primordial germ cells. Development. 2017;144:928–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blesbois E, Seigneurin F, Grasseau I, Limouzin C, Besnard J, Gourichon D, et al. Semen cryopreservation for ex situ management of genetic diversity in chicken: creation of the French avian cryobank. Poult Sci. 2007;86:555–64.
Article
CAS
PubMed
Google Scholar
Nandi S, Whyte J, Taylor L, Sherman A, Nair V, Kaiser P, et al. Cryopreservation of specialized chicken lines using cultured primordial germ cells. Poult Sci. 2016;95:1905–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakamura Y. Avian Biotechnology. Adv Exp Med Biol. 2017;1001:187–214.
Article
CAS
PubMed
Google Scholar
Woodcock ME, Idoko-Akoh A, McGrew MJ. Gene editing in birds takes flight. Mamm Genome. 2017;28:315–23 https://doi.org/10.1007/s00335-017-9701-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boddicker NJ, Bjorkquist A, Rowland RR, Lunney JK, Reecy JM, Dekkers JC. Genome-wide association and genomic prediction for host response to porcine reproductive and respiratory syndrome virus infection. Genet Sel Evol. 2014;46:18.
Article
PubMed
PubMed Central
Google Scholar
Lough G, Hess A, Hess M, Lunney J, Rowland BB, Kyriazakis I, et al. Harnessing longitudinal information to identify genetic variation in tolerance of pigs to porcine reproductive and respiratory syndrome virus. Genet Sel Evol. 2018;50:50. https://doi.org/10.1186/s12711-018-0420-z.
Article
PubMed
PubMed Central
Google Scholar
Boddicker NJ, Garrick DJ, Rowland RRR, Lunney JK, Reecy JM, Dekkers JCM. Validation and further characterization of a major quantitative trait locus associated with host response to experimental infection with porcine reproductive and respiratory syndrome virus. Anim Genet. 2014;45:48–58.
Article
CAS
PubMed
Google Scholar
Koltes JE, Fritz-Waters E, Eisley CJ, Choi I, Bao H, Kommadath A, et al. Identification of a putative quantitative trait nucleotide in guanylate binding protein 5 for host response to PRRS virus infection. BMC Genomics. 2015;16:412.
Article
PubMed
PubMed Central
CAS
Google Scholar
Van Gorp H, Van Breedam W, Van Doorsselaere J, Delputte PL, Nauwynck HJ. Identification of the CD163 protein domains involved in infection of the porcine reproductive and respiratory syndrome virus. J Virol. 2010;84:3101–5.
Article
CAS
PubMed
Google Scholar
Whitworth KM, Rowland RRR, Ewen CL, Trible BR, Kerrigan MA, Cino-Ozuna AG, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol. 2015;34:20–2 http://www.nature.com/doifinder/10.1038/nbt.3434.
Article
PubMed
CAS
Google Scholar
Yang H, Zhang J, Zhang X, Shi J, Pan Y, Zhou R, et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus. Antivir Res. 2018;151:63–70.
Article
CAS
PubMed
Google Scholar
Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, et al. Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog. 2017;13:e1006206 http://dx.plos.org/10.1371/journal.ppat.1006206.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burkard C, Opriessnig T, Mileham AJ, Stadejek T, Ait-Ali T, Lillico SG, et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection. J Virol. 2018;92 https://doi.org/10.1128/JVI.00415-18.
Lu T, Song Z, Li Q, Li Z, Wang M, Liu L, et al. Overexpression of histone deacetylase 6 enhances resistance to porcine reproductive and respiratory syndrome virus in pigs. PLoS One. 2017;12:e0169317 http://dx.plos.org/10.1371/journal.pone.0169317.
Article
PubMed
PubMed Central
Google Scholar
Palgrave CJ, Gilmour L, Lowden CS, Lillico SG, Mellencamp MA, Whitelaw CBA. Species-specific variation in RELA underlies differences in NF-κB activity: a potential role in african swine fever pathogenesis. J Virol. 2011;85:6008–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lillico SG, Proudfoot C, King TJ, Tan W, Zhang L, Mardjuki R, et al. Mammalian interspecies substitution of immune modulatory alleles by genome editing. Sci Rep. 2016;6:21645 http://www.nature.com/articles/srep21645.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shanthalingam S, Tibary A, Beever JE, Kasinathan P, Brown WC, Srikumaran S. Precise gene editing paves the way for derivation of Mannheimia haemolytica leukotoxin-resistant cattle. Proc Natl Acad Sci U S A. 2016;113:13186–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng X, Wang H. Multiple targeting motifs direct NRAMP1 into lysosomes. Biochem Biophys Res Commun. 2012;419:578–83.
Article
CAS
PubMed
Google Scholar
Gao Y, Wu H, Wang Y, Liu X, Chen L, Li Q, et al. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects. Genome Biol. 2017;18:13 https://doi.org/10.1186/s13059-016-1144-4.
Anderson RM, May RM. Infectious diseases of humans. Dynamics and control: Oxford University Press; 1991. https://global.oup.com/academic/product/infectious-diseases-of-humans-9780198540403?cc=gb&lang=en&
Kimman TG, Cornelissen LA, Moormann RJ, Rebel JMJ, Stockhofe-Zurwieden N. Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine. 2009;27:3704–18.
Article
CAS
PubMed
Google Scholar
Murtaugh MP, Stadejek T, Abrahante JE, Lam TTY, FC-C L. The ever-expanding diversity of porcine reproductive and respiratory syndrome virus. Virus Res. 2010;154:18–30.
Article
CAS
PubMed
Google Scholar
Shafran D, Kodish E, Tzakis A. Organ shortage: the greatest challenge facing transplant medicine. World J Surg. 2014;38:1650–7.
Article
PubMed
Google Scholar
Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med. 1997;3:282–6.
Article
CAS
PubMed
Google Scholar
Moalic Y, Blanchard Y, Félix H, Jestin A. Porcine endogenous retrovirus integration sites in the human genome: features in common with those of murine leukemia virus. J Virol. 2006;80:10980–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang L, Güell M, Niu D, George H, Lesha E, Grishin D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science. 2015;350:1101–4.
Article
CAS
PubMed
Google Scholar
Niu D, Wei H-J, Lin L, George H, Wang T, Lee I-H, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017;357:1303–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ledford H. Salmon approval heralds rethink of transgenic animals. Nature. 2015;527:417–8 http://www.nature.com/doifinder/10.1038/527417a.
Article
CAS
PubMed
Google Scholar
Jenko J, Gorjanc G, Cleveland MA, Varshney RK, Whitelaw CBA, Woolliams JA, et al. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genet Sel Evol. 2015;47:55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Johnsson M, Gaynor RC, Jenko J, Gorjanc G, de KD-J, Hickey JM. Removal of alleles by genome editing — RAGE against the deleterious load. bioRxiv. 2018:335497 https://doi.org/10.1101/335497.