Ellegren H, Sheldon BC: Genetic basis of fitness differences in natural populations. Nature. 2008, 452: 169-175. 10.1038/nature06737.
PubMed
CAS
Google Scholar
Abzhanov A, Kuo WP, Hartmann C, Grant RB, Peter R, Grant PR, Tabin CJ: The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature. 2006, 442: 563-567. 10.1038/nature04843.
PubMed
CAS
Google Scholar
Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ: Bmp4 and morphological variation of beaks in Darwin's finches. Science. 2004, 305: 1462-1465. 10.1126/science.1098095.
PubMed
CAS
Google Scholar
Mundy NI, Badcock NS, Hart T, Schribner K, Janssen K, Nadeau NJ: Conserved genetic basis of a quantitative plumage trait involved in mate choice. Science. 2004, 303: 1870-1873. 10.1126/science.1093834.
PubMed
CAS
Google Scholar
Animal Genome Size Database. [http://www.genomesize.com/]
Wicker T, Robertson JS, Schulze SR, Feltus FA, Magrini V, Morrison JA, Mardis ER, Peterson DG, Paterson AH, Ivarie R: The repetitive landscape of the chicken genome. Genome Res. 2005, 15: 126-136. 10.1101/gr.2438005.
PubMed
PubMed Central
Google Scholar
Griffin DK, Robertson LBW, Tempest HG, Skinner BM: The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenet Genome Res. 2007, 117: 64-77. 10.1159/000103166.
PubMed
CAS
Google Scholar
Ellegren H, Hultin-Rosenberg L, Brunstrom B, Dencker K, Kultima K, Scholz B: Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biol. 2007, 5: 40-10.1186/1741-7007-5-40.
PubMed
PubMed Central
Google Scholar
Itoh Y, Melamed E, Yang X, Kampf K, Wang S, Yehya N, van Nas A, Replogle K, Band MR, Clayton DF, Schadt EE, Lusis AJ, Arnold AP: Dosage compensation is less effective in birds than in mammals. J Biol. 2007, 6: 2-10.1186/jbiol53.
PubMed
PubMed Central
Google Scholar
ICGSC: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004, 432: 695-716. 10.1038/nature03154.
Google Scholar
Axelsson E, Webster MT, Smith NGC, Burt DW, Ellegren H: Comparison of the chicken and turkey genomes reveals a higher rate of nucleotide divergence on microchromosomes than macrochromosomes. Genome Res. 2005, 15: 120-125. 10.1101/gr.3021305.
PubMed
CAS
PubMed Central
Google Scholar
Webster MT, Axelsson E, Ellegren H: Strong regional biases in nucleotide substitution in the chicken genome. Mol Biol Evol. 2006, 23: 1203-1216. 10.1093/molbev/msk008.
PubMed
CAS
Google Scholar
Karro JE, Peifer M, Hardison RC, Kollmann M, von Grunberg HH: Exponential decay of GC content detected by strand-symmetric substitution rates influences the evolution of isochore structure. Mol Biol Evol. 2008, 25: 362-374. 10.1093/molbev/msm261.
PubMed
CAS
Google Scholar
Axelsson E, Hultin-Rosenberg L, Brandstrom M, Zwahlén M, Clayton DF, Ellegren H: Natural selection in avian protein-coding genes expressed in brain. Mol Ecol. 2008, 17: 3008-3017. 10.1111/j.1365-294X.2008.03795.x.
PubMed
CAS
Google Scholar
Axelsson E, Ellegren H: Quantification of adaptive evolution of genes epressed in avian brain and the population size effect on the efficacy of selection. Mol Biol Evol. 2009, 26: 1073-1079. 10.1093/molbev/msp019.
PubMed
CAS
Google Scholar
Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Künstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong L, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TA, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin YC, George J, Sweedler J, Southey B, Gunaratne P, Watson M, et al: The genome of the zebra finch: special insights into vocal learning and communication. Nature. 2010, 464: 757-762. 10.1038/nature08819.
PubMed
CAS
PubMed Central
Google Scholar
Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, Glanowski S, Tanenbaum DM, White TJ, Sninsky JJ, Hernandez RD, Civello D, Adams MD, Cargill M, Clark AG: Natural selection on protein-coding genes in the human genome. Nature. 2005, 437: 1153-1157. 10.1038/nature04240.
PubMed
CAS
Google Scholar
Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-Alon A, Tanenbaum DM, Civello D, White TJ, J Sninsky J, Adams MD, Cargill M: A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 2005, 3: e170-10.1371/journal.pbio.0030170.
PubMed
PubMed Central
Google Scholar
Goldman SA, Nottebohm F: Neuronal productIon, migration and differentiatlon in a vocal control nucleus of the adult female canarv brain. Proc Natl Acad Sci USA. 1983, 80: 2390-2394. 10.1073/pnas.80.8.2390.
PubMed
CAS
PubMed Central
Google Scholar
Paton JA, Nottebohm F: Neurons generated in the adult brain are recruited into functional circuits. Science. 1984, 225: 1046-l048. 10.1126/science.6474166.
PubMed
CAS
Google Scholar
Proposal to Sequence the Genome of the Zebra Finch (Taeniopygia guttata). [http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/ZebraFinchSeq2.pdf]
Doupe AJ, Kuhl PK: Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci. 1999, 22: 567-631. 10.1146/annurev.neuro.22.1.567.
PubMed
CAS
Google Scholar
Gahr M: Neural song control system of hummingbirds: Comparison to swifts, vocal learning (songbirds) and nonlearning (Suboscines) passerines, and vocal learning (budgerigars) and nonlearning (dove, owl, gull, quail, chicken) nonpasserines. J Comp Neurol. 2000, 426: 182-96. 10.1002/1096-9861(20001016)426:2<182::AID-CNE2>3.0.CO;2-M.
PubMed
CAS
Google Scholar
Jarvis ED: Learned birdsong and the neurobiology of human language. Ann N Y Acad Sci. 2004, 1016: 749-777. 10.1196/annals.1298.038.
PubMed
PubMed Central
Google Scholar
Heger A, Ponting CP: Evolutionary rate analyses of orthologs and paralogs from 12 Drosophila genomes. Genome Res. 2007, 17: 1837-1849. 10.1101/gr.6249707.
PubMed
CAS
PubMed Central
Google Scholar
Hugall AF, Foster R, Lee MSY: Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. Syst Biol. 2007, 56: 543-563. 10.1080/10635150701477825.
PubMed
CAS
Google Scholar
van Tuinen M, Hedges SB: Calibration of avian molecular clocks. Mol Biol Evol. 2001, 18: 206-213.
PubMed
CAS
Google Scholar
Clayton DF, Balakrishnan CN, London SE: Integrating genomes, brain and behavior in the study of songbirds. Curr Biol. 2009, 19: R865-873. 10.1016/j.cub.2009.07.006.
PubMed
CAS
PubMed Central
Google Scholar
Dorus S, Vallender EJ, Evans PD, Anderson JR, Gilbert SL, Mahowald M, Wyckoff GJ, Malcom CM, Lahn BT: Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell. 2004, 119: 1027-1040. 10.1016/j.cell.2004.11.040.
PubMed
CAS
Google Scholar
Lovell PV, Clayton DF, Replogle KL, Mello CV: Birdsong "transcriptomics": neurochemical specializations of the oscine song system. PLoS ONE. 2008, 3: e3440-10.1371/journal.pone.0003440.
PubMed
PubMed Central
Google Scholar
Groenen MA, Wahlberg P, Foglio M, Cheng HH, Megens HJ, Crooijmans RP, Besnier F, Lathrop M, Muir WM, Wong GK, Gut I, Andersson L: A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Res. 2009, 19: 510-519. 10.1101/gr.086538.108.
PubMed
CAS
PubMed Central
Google Scholar
Backström N, Forstmeier W, Schielzeth H, Mellenius H, Nam K, Bolund E, Webster MT, Öst T, Schneider M, Kempenaers B, Ellegren H: The recombination landscape of the zebra finch genome Taeniopygia guttata genome. Genome Res. 2010, 20: 485-495. 10.1101/gr.101410.109.
PubMed
PubMed Central
Google Scholar
Hill WG, Robertson A: Effect of linkage on limits to artificial selection. Genet Res. 1966, 8: 269-294. 10.1017/S0016672300010156.
PubMed
CAS
Google Scholar
Betancourt AJ, Presgraves DC: Linkage limits the power of natural selection in Drosophila. Proc Natl Acad Sci USA. 2002, 99: 13616-13620. 10.1073/pnas.212277199.
PubMed
CAS
PubMed Central
Google Scholar
Presgraves DC: Recombination enhances protein adaptation in Drosophila melanogaster. Curr Biol. 2005, 15: 1651-1656. 10.1016/j.cub.2005.07.065.
PubMed
CAS
Google Scholar
Goodstadt L, Heger A, Webber C, Ponting CP: An analysis of the gene complement of a marsupial, Monodelphis domestica: evolution of lineage-specific genes and giant chromosomes. Genome Res. 2007, 17: 969-981. 10.1101/gr.6093907.
PubMed
CAS
PubMed Central
Google Scholar
Bullaughey K, Przeworski M, Coop G: No effect of recombination on the efficacy of natural selection in primates. Genome Res. 2008, 18: 544-554. 10.1101/gr.071548.107.
PubMed
CAS
PubMed Central
Google Scholar
Nguyen DQ, Webber C, Hehir-Kwa J, Pfundt R, Veltman J, Ponting CP: Reduced purifying selection prevails over positive selection in human copy number variant evolution. Genome Res. 2008, 18: 1711-1723. 10.1101/gr.077289.108.
PubMed
CAS
PubMed Central
Google Scholar
Galtier N, Duret L: Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends Genet. 2007, 23: 273-277. 10.1016/j.tig.2007.03.011.
PubMed
CAS
Google Scholar
Williams EJB, Hurst LD: Is the synonymous substitution rate in mammals gene-specific?. Mol Biol Evol. 2002, 19: 1395-1398.
PubMed
CAS
Google Scholar
Bierne N, Eyre-Walker A: The problem of counting sites in the estimation of the synonymous and nonsynonymous substitution rates: Implications for the correlation between the synonymous substitution rate and codon usage bias. Genetics. 2003, 165: 1587-1597.
PubMed
PubMed Central
Google Scholar
Ericson PGP, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G: Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett. 2006, 2: 543-U541. 10.1098/rsbl.2006.0523.
PubMed
PubMed Central
Google Scholar
Benton MJ, Donoghue PCJ: Paleontological evidence to date the tree of life. Mol Biol Evol. 2007, 24: 26-53. 10.1093/molbev/msl150.
PubMed
CAS
Google Scholar
Brown JW, Payne RB, Mindell DP: Nuclear DNA does not reconcile 'rocks' and 'clocks' in Neoaves: a comment on Ericson et al. Biol Lett. 2007, 3: 257-259. 10.1098/rsbl.2006.0611.
PubMed
CAS
PubMed Central
Google Scholar
Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han KL, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T: A phylogenomic study of birds reveals their evolutionary history. Science. 2008, 320: 1763-1768. 10.1126/science.1157704.
PubMed
CAS
Google Scholar
Sibley CG, Ahlquist J: Phylogeny and Classification of Birds. 1990, New Haven, CN: Yale University Press
Google Scholar
Cracraft J: Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event. Proc Biol Sci. 2001, 268: 459-469. 10.1098/rspb.2000.1368.
PubMed
CAS
PubMed Central
Google Scholar
Pratt RC, Gibb GC, Morgan-Richards M, Philips MJ, Hendy MD, Penny D: Toward resolving deep Neoaves phylogeny: data, signal enhancement, and priors. Mol Biol Evol. 2009, 26: 313-326. 10.1093/molbev/msn248.
PubMed
CAS
Google Scholar
Li WH, Tanimura M, Sharp PM: An evaluation of the molecular clocl hypothesis using mammlian DNA-sequences. J Mol Evol. 1987, 25: 330-342. 10.1007/BF02603118.
PubMed
CAS
Google Scholar
van Tuinen M, Hedges SB: Calibration of avian molecular clocks. Mol Biol Evol. 2001, 18: 206-213.
PubMed
CAS
Google Scholar
Slack KE, Jones CM, Ando T, Harrison GL, Fordyce RE, Arnason U, Penny D: Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Mol Biol Evol. 2006, 23: 1144-1155. 10.1093/molbev/msj124.
PubMed
CAS
Google Scholar
Fountaine TM, Benton MJ, Dyke GJ, Nudds RL: The quality of the fossil record of Mesozoic birds. Proc Biol Sci. 2005, 272: 289-294. 10.1098/rspb.2004.2923.
PubMed
PubMed Central
Google Scholar
Imamura H, Karro JE, Chuang JH: Weak preservation of local neutral substitution rates across mammalian genomes. BMC Evol Biol. 2009, 9: 11-10.1186/1471-2148-9-89.
Google Scholar
Mugal CF, Wolf JB, von Grunberg HH, Ellegren H: Conservation of neutral substitution rate and substitutional asymmetries in mammalian genes. Genome Biol Evol. 2010, 2010: 19-28. 10.1093/gbe/evp056.
Google Scholar
Eyre-Walker A: Recombination and mammalian genome evolution. Proc Biol Sci. 1993, 252: 237-243. 10.1098/rspb.1993.0071.
PubMed
CAS
Google Scholar
Hardison RC, Roskin KM, Yang S, Diekhans M, Kent WJ, Weber R, Elnitski L, Li J, O'connor M, Kolbe D, Schwartz S, Furey TS, Whelan S, Goldman N, Smit A, Miller W, Chiaromonte F, Haussler D: Covariation in frequencies of substitution, deletion, transposition, and recombination during eutherian evolution. Genome Res. 2003, 13: 13-26. 10.1101/gr.844103.
PubMed
CAS
PubMed Central
Google Scholar
Meunier J, Duret L: Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol. 2004, 21: 984-990. 10.1093/molbev/msh070.
PubMed
CAS
Google Scholar
Ellegren H: Comparative genomics and the study of evolution by natural selection. Mol Ecol. 2008, 17: 4586-4596. 10.1111/j.1365-294X.2008.03954.x.
PubMed
Google Scholar
den Hollander AI, Ten Brink JB, de Kok YJ, van Soest S, van Den Born LI, van Driel MA, van De Pol DJ, Payne AM, Bhattacharya SS, Kellner U, Hoyng CB, Westerveld A, Brunner HG, Bleeker-Wagemakers EM, Deutman AF, Heckenlively JR, Cremers FP, Bergen AA: Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nat Genet. 1999, 23: 217-221. 10.1038/13848.
PubMed
CAS
Google Scholar
Clark AG, Glanowski S, Nielsen R, Thomas PD, Kejariwal A, Todd MA, Tanenbaum DM, Civello D, Lu F, Murphy B, Ferriera S, Wang G, Zheng X, White TJ, Sninsky JJ, Adams MD, Cargill M: Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science. 2003, 302: 1960-1963. 10.1126/science.1088821.
PubMed
CAS
Google Scholar
Arbiza L, Dopazo J, Dopazo H: Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome. PLoS Comput Biol. 2006, 2: e38-10.1371/journal.pcbi.0020038.
PubMed
PubMed Central
Google Scholar
Kosiol C, Vinar T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R, Siepel A: Patterns of positive selection in six mammalian genomes. PLoS Genet. 2008, 4: e1000144-10.1371/journal.pgen.1000144.
PubMed
PubMed Central
Google Scholar
Künstner A, Wolf JB, Backström N, Whitney O, Balakrishnan CN, Day L, Edwards SV, Janes DE, Schlinger BA, Wilson RK, Jarvis ED, Warren WC, Ellegren H: Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 birds species. Mol Ecol. 2010, 19 (Suppl 1): 266-276. 10.1111/j.1365-294X.2009.04487.x.
PubMed
PubMed Central
Google Scholar
Tchernichovski O, Mitra PP, Lints T, Nottebohm F: Dynamics of the vocal imitation process: How a zebra finch learns its song. Science. 2001, 291: 2564-2569. 10.1126/science.1058522.
PubMed
CAS
Google Scholar
Deregnaucourt S, Mitra PP, Feher O, Pytte C, Tchernichovski O: How sleep affects the developmental learning of bird song. Nature. 2005, 433: 710-716. 10.1038/nature03275.
PubMed
CAS
Google Scholar
Kao MH, Doupe AJ, Brainard MS: Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature. 2005, 433: 638-643. 10.1038/nature03127.
PubMed
CAS
Google Scholar
Aronov D, Andalman AS, Fee MS: A specialized forebrain circuit for vocal babbling in the juvenile songbird. Science. 2008, 320: 630-634. 10.1126/science.1155140.
PubMed
CAS
Google Scholar
Mello CV, Vicario DS, Clayton DF: Song presentation induces gene expression in the songbird forebrain. Proc Natl Acad Sci. 1992, 89: 6818-6822. 10.1073/pnas.89.15.6818.
PubMed
CAS
PubMed Central
Google Scholar
Mello C, Nottebohm F, Clayton D: Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene's response to that song in zebra finch telencephalon. J Neurosci. 1995, 15: 6919-6925.
PubMed
CAS
Google Scholar
Jarvis ED, Nottebohm F: Motor-driven gene expression. Proc Natl Acad Sci USA. 1997, 94: 4097-4102. 10.1073/pnas.94.8.4097.
PubMed
CAS
PubMed Central
Google Scholar
Jin H, Clayton DF: Synelfin regulation during the critical period for song learning in normal and isolated juvenile zebra finches. Neurobiol Learn Mem. 1997, 68: 271-284. 10.1006/nlme.1997.3795.
PubMed
CAS
Google Scholar
Kimpo RR, Doupe AJ: FOS is induced by singing in distinct neuronal populations in a motor network. Neuron. 1997, 18: 315-325. 10.1016/S0896-6273(00)80271-8.
PubMed
CAS
Google Scholar
Jarvis ED, Scharff C, Grossman MR, Ramos JA, Nottebohm F: For whom the bird sings: context-dependent gene expression. Neuron. 1998, 21: 775-788. 10.1016/S0896-6273(00)80594-2.
PubMed
CAS
Google Scholar
Wada K, Howard JT, McConnell P, Whitney O, Lints T, Rivas MV, Horita H, Patterson MA, White SA, Scharff C, Haesler S, Zhao S, Sakaguchi H, Hagiwara M, Shiraki T, Hirozane-Kishikawa T, Skene P, Hayashizaki Y, Carninci P, Jarvis ED: A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proc Natl Acad Sci USA. 2006, 103: 15212-15217. 10.1073/pnas.0607098103.
PubMed
CAS
PubMed Central
Google Scholar
Woolley SC, Doupe AJ: Social context-induced song variation affects female behavior and gene expression. PLoS Biol. 2008, 6: e62-10.1371/journal.pbio.0060062.
PubMed
PubMed Central
Google Scholar
Dong S, Replogle KL, Hasadsri L, Imai BS, Yau PM, Rodriguez-Zas S, Southey BR, Sweedler JV, Clayton DF: Discrete molecular states in the brain accompany changing responses to a vocal signal. Proc Natl Acad Sci USA. 2009, 106: 11364-11369. 10.1073/pnas.0812998106.
PubMed
CAS
PubMed Central
Google Scholar
Bond J, Roberts E, Mochida GH, Hampshire DJ, Scott S, Askham JM, Springell K, Mahadevan M, Crow YJ, Markham AF, Walsh CA, Woods CG: ASPM is a major determinant of cerebral cortical size. Nat Genet. 2002, 32: 316-320. 10.1038/ng995.
PubMed
CAS
Google Scholar
Zhang JZ: Evolution of the human ASPM gene, a major determinant of brain size. Genetics. 2003, 165: 2063-2070.
PubMed
CAS
PubMed Central
Google Scholar
Evans PD, Gilbert SL, Mekel-Bobrov N, Vallender EJ, Anderson JR, Vaez-Azizi LM, Tishkoff SA, Hudson RR, Lahn BT: Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science. 2005, 309: 1717-1720. 10.1126/science.1113722.
PubMed
CAS
Google Scholar
Mekel-Bobrov N, Gilbert SL, Evans PD, Vallender EJ, Anderson JR, Hudson RR, Tishkoff SA, Lahn BT: Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens. Science. 2005, 309: 1720-1722. 10.1126/science.1116815.
PubMed
CAS
Google Scholar
Evans PD, Anderson JR, Vallender EJ, Choi SS, Lahn BT: Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size. Hum Mol Genet. 2004, 13: 1139-1145. 10.1093/hmg/ddh126.
PubMed
CAS
Google Scholar
Burish MJ, Kueh HY, Wang SS: Brain architecture and social complexity in modern and ancient birds. Brain Behav Evol. 2004, 63: 107-124. 10.1159/000075674.
PubMed
Google Scholar
Mekel-Bobrov N, Posthuma D, Gilbert SL, Lind P, Gosso MF, Luciano M, Harris SE, Bates TC, Polderman TJ, Whalley LJ, Fox H, Starr JM, Evans PD, Montgomery GW, Fernandes C, Heutink P, Martin NG, Boomsma DI, Deary IJ, Wright MJ, de Geus EJ, Lahn BT: The ongoing adaptive, evolution of ASPM and Microcephalin is not explained by increased intelligence. Hum Mol Genet. 2007, 16: 600-608. 10.1093/hmg/ddl487.
PubMed
CAS
Google Scholar
Timpson N, Heron J, Smith GD, Enard W: Comment on papers by Evans et al. and Mekel-Bobrov et al. on evidence for positive selection of MCPH1 and ASPM. Science. 2007, 317: 1036-10.1126/science.1141705.
PubMed
Google Scholar
Ponting CP: A novel domain suggests a ciliary function for ASPM, a brain size determining gene. Bioinformatics. 2006, 22: 1031-1035. 10.1093/bioinformatics/btl022.
PubMed
CAS
Google Scholar
Lau CG, Zukin RS: NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci. 2007, 8: 413-426. 10.1038/nrn2153.
PubMed
CAS
Google Scholar
Ali F, Meier R: Primate home range and GRIN2A, a receptor gene involved in neuronal plasticity: Implications for the evolution of spatial memory. Genes Brain Behav. 2009, 8: 435-441. 10.1111/j.1601-183X.2009.00489.x.
PubMed
CAS
Google Scholar
Krebs JR, Sherry DF, Healy SD, Perry VH, Vaccarino AL: Hippocampal specialization of food-storing birds. Proc Natl Acad Sci USA. 1989, 86: 1388-1392. 10.1073/pnas.86.4.1388.
PubMed
CAS
PubMed Central
Google Scholar
Shiflett MW, Tomaszycki ML, Rankin AZ, DeVoogd TJ: Long-term memory for spatial locations in a food-storing bird (Poecile atricapilla) requires activation of NMDA receptors in the hippocampal formation during learning. Behav Neurosci. 2004, 118: 121-130. 10.1037/0735-7044.118.1.121.
PubMed
CAS
Google Scholar
Zann RA: The Zebra Finch: a Synthesis of Field and Laboratory Studies. 1996, Oxford: Oxford University Press
Google Scholar
Aamodt SM, Nordeen EJ, Nordeen KW: Blockade of NMDA receptors during song model exposure impairs song development in juvenile zebra finches. Neurobiol Learn Mem. 1996, 65: 91-98. 10.1006/nlme.1996.0010.
PubMed
CAS
Google Scholar
White SA, Livingston FS, Mooney R: Androgens modulate NMDA receptor-mediated EPSCs in the zebra finch song system. J Neurophysiol. 1999, 82: 2221-2234.
PubMed
CAS
Google Scholar
Rocha EP, Smith JM, Hurst LD, Holden MT, Cooper JE, Smith NH, Fell EJ: Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol. 2006, 239: 226-235. 10.1016/j.jtbi.2005.08.037.
PubMed
CAS
Google Scholar
Peterson GI, Masel J: Quantitative prediction of molecular clock and K-a/K-s at short timescales. Mol Biol Evol. 2009, 26: 2595-2603. 10.1093/molbev/msp175.
PubMed
CAS
PubMed Central
Google Scholar
Wolf JB, Künstner A, Nam K, Jakobsson M, Ellegren H: Nonlinear dynamics of nonsynonymous (dN) and synonymous (dS) substitution rates affects inference of selection. Genome Biol Evol. 2009, 2009: 308-319. 10.1093/gbe/evp030.
Google Scholar
Ohta T: Slightly deleterious mutant substitutions in evolution. Nature. 1973, 246: 96-98. 10.1038/246096a0.
PubMed
CAS
Google Scholar
Ellegren H: A selection model of molecular evolution incorporating the effective population size. Evolution. 2009, 63: 301-305. 10.1111/j.1558-5646.2008.00560.x.
PubMed
Google Scholar
Felsenstein J: Evolutionary advantage of recombination. Genetics. 1974, 78: 737-756.
PubMed
CAS
PubMed Central
Google Scholar
Peck JR: A ruby in the rubbish - beneficial mutations, deleterious mutations and the evolution of sex. Genetics. 1994, 137: 597-606.
PubMed
CAS
PubMed Central
Google Scholar
Bachtrog D: Evidence that positive selection drives Y-chromosome degeneration in Drosophila miranda. Nat Genet. 2004, 36: 518-522. 10.1038/ng1347.
PubMed
CAS
Google Scholar
Bachtrog D: Sex chromosome evolution: Molecular aspects of Y-chromosome degeneration in Drosophila. Genome Res. 2005, 15: 1393-1401. 10.1101/gr.3543605.
PubMed
CAS
PubMed Central
Google Scholar
Berlin S, Ellegren H: Fast accumulation of nonsynonymous mutations on the female-specific W chromosome in birds. J Mol Evol. 2006, 62: 66-72. 10.1007/s00239-005-0067-6.
PubMed
CAS
Google Scholar
Haddrill PR, Halligan DL, Tomaras D, Charlesworth B: Reduced efficacy of, selection in regions of the Drosophila genome that lack crossing over. Genome Biol. 2007, 8: R18-10.1186/gb-2007-8-2-r18.
PubMed
PubMed Central
Google Scholar
Larracuente AM, Sackton TB, Greenberg AJ, Wong A, Singh ND, Sturgill D, Zhang Y, Oliver B, Clark AG: Evolution of protein-coding genes in Drosophila. Trends Genet. 2008, 24: 114-123. 10.1016/j.tig.2007.12.001.
PubMed
CAS
Google Scholar
Jensen-Seaman MI, Furey TS, Payseur BA, Lu Y, Roskin KM, Chen CF, Thomas MA, Haussler D, Jacob HJ: Comparative recombination rates in the rat, mouse, and human genomes. Genome Res. 2004, 14: 528-538. 10.1101/gr.1970304.
PubMed
CAS
PubMed Central
Google Scholar
Ptak SE, Roeder AD, Stephens M, Gilad Y, Pääbo S, Przeworski M: Absence of the TAP2 human recombination hotspot in chimpanzees. PLoS Biol. 2004, 2: e155-10.1371/journal.pbio.0020155.
PubMed
PubMed Central
Google Scholar
Winckler W, Myers SR, Richter DJ, Onofrio RC, Mcdonald GJ, Bontrop RE, Mcvean GA, Gabriel SB, Reich D, Donnelly P, Altshuler D: Comparison of fine-scale recombination rates in humans and chimpanzees. Science. 2005, 308: 107-111. 10.1126/science.1105322.
PubMed
CAS
Google Scholar
Jeffreys AJ, Neumann R: The rise and fall of a human recombination hot spot. Nat Genet. 2009, 41: 625-629. 10.1038/ng.346.
PubMed
CAS
PubMed Central
Google Scholar
Myers S, Freeman C, Auton A, Donnelly P, McVean G: A common sequence motif associated with recombination hotspot and genome instability in humans. Nat Genet. 2008, 40: 1124-1129. 10.1038/ng.213.
PubMed
CAS
Google Scholar
McVean GAT, Charlesworth B: The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. Genetics. 2000, 155: 929-944.
PubMed
CAS
PubMed Central
Google Scholar
Balakrishnan CN, Edwards SV: Nucleotide variation, linkage disequilibrium and founder-facilitated speciation in wild populations of the zebra finch (Taeniopygia guttata). Genetics. 2009, 181: 645-660. 10.1534/genetics.108.094250.
PubMed
PubMed Central
Google Scholar
Biomart. [http://www.biomart.org]
Berglund AC, Sjölund E, Ostlund G, Sonnhammer EL: InParanoid 6: eukaryotic ortholog clusters with inparalogs. Nucleic Acids Res. 2008, 36: D263-266. 10.1093/nar/gkm1020.
PubMed
CAS
PubMed Central
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32: 1792-1797. 10.1093/nar/gkh340.
PubMed
CAS
PubMed Central
Google Scholar
Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000, 17: 540-552.
PubMed
CAS
Google Scholar
Yang ZH: PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007, 24: 1586-1591. 10.1093/molbev/msm088.
PubMed
CAS
Google Scholar
Storey JD: A direct approach to false discovery rates. J R Stat Soc Series B. 2002, 64: 479-498. 10.1111/1467-9868.00346.
Google Scholar
Yang ZH: Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol. 1998, 15: 568-573.
PubMed
CAS
Google Scholar
Yang ZH, Nielsen R: Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol. 2002, 19: 908-917.
PubMed
CAS
Google Scholar
Zhang JZ, Nielsen R, Yang ZH: Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol. 2005, 22: 2472-2479. 10.1093/molbev/msi237.
PubMed
CAS
Google Scholar
Beissbarth T, Speed TP: GOstat: Find statistically overrepresented gene ontologies within a group of genes. Bioinformatics. 2004, 20: 1464-1465. 10.1093/bioinformatics/bth088.
PubMed
CAS
Google Scholar
Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Series B Meth. 1995, 57: 289-300.
Google Scholar
OMIM Database. [http://www.ncbi.nlm.nih.gov/omim/]