Fuda NJ, Ardehali MB, Lis JT. Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature. 2009;461:186–92.
Article
CAS
Google Scholar
Roeder RG. 50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms. Nat Struct Mol Biol. 2019;26:783–91.
Article
CAS
Google Scholar
Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol. 2018;19:464–78.
Article
CAS
Google Scholar
Adelman K, Lis JT. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet. 2012;13:720–31.
Article
CAS
Google Scholar
Zhao S, Allis CD, Wang GG. The language of chromatin modification in human cancers. Nat Rev Cancer. 2021;21:413–30.
Article
Google Scholar
van der Knaap JA, Verrijzer CP. Undercover: gene control by metabolites and metabolic enzymes. Genes Dev. 2016;30:2345–69.
Article
Google Scholar
Haws SA, Yu D, Ye C, Wille CK, Nguyen LC, Krautkramer KA, et al. Methyl-metabolite depletion elicits adaptive responses to support heterochromatin stability and epigenetic persistence. Mol Cell. 2020;78:210–223 e218.
Article
CAS
Google Scholar
Ladurner AG. Rheostat control of gene expression by metabolites. Mol Cell. 2006;24:1–11.
Article
CAS
Google Scholar
Li X, Egervari G, Wang Y, Berger SL, Lu Z. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat Rev Mol Cell Biol. 2018;19:563–78.
Article
CAS
Google Scholar
Gut P, Verdin E. The nexus of chromatin regulation and intermediary metabolism. Nature. 2013;502:489–98.
Article
CAS
Google Scholar
Mentch SJ, Mehrmohamadi M, Huang L, Liu X, Gupta D, Mattocks D, et al. Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 2015;22:861–73.
Article
CAS
Google Scholar
Hansel-Hertsch R, Di Antonio M, Balasubramanian S. DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol. 2017;18:279–84.
Article
CAS
Google Scholar
Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol. 2020;21:459–74.
Article
CAS
Google Scholar
Marsico G, Chambers VS, Sahakyan AB, McCauley P, Boutell JM, Antonio MD, et al. Whole genome experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 2019;47:3862–74.
Article
CAS
Google Scholar
Biffi G, Tannahill D, McCafferty J, Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat Chem. 2013;5:182–6.
Article
CAS
Google Scholar
Zheng KW, Zhang JY, He YD, Gong JY, Wen CJ, Chen JN, et al. Detection of genomic G-quadruplexes in living cells using a small artificial protein. Nucleic Acids Res. 2020;48:11706–20.
Article
CAS
Google Scholar
Spiegel J, Adhikari S, Balasubramanian S. The structure and function of DNA G-Quadruplexes. Trends Chem. 2020;2:123–36.
Article
CAS
Google Scholar
De Cian A, Cristofari G, Reichenbach P, De Lemos E, Monchaud D, Teulade-Fichou MP, et al. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proc Natl Acad Sci U S A. 2007;104:17347–52.
Article
Google Scholar
Lyu J, Shao R, Kwong Yung PY, Elsasser SJ. Genome-wide mapping of G-quadruplex structures with CUT&Tag. Nucleic Acids Res. 2022;50:e13.
Article
CAS
Google Scholar
Zyner KG, Simeone A, Flynn SM, Doyle C, Marsico G, Adhikari S, et al. G-quadruplex DNA structures in human stem cells and differentiation. Nat Commun. 2022;13:142.
Article
CAS
Google Scholar
Li C, Wang H, Yin Z, Fang P, Xiao R, Xiang Y, et al. Ligand-induced native G-quadruplex stabilization impairs transcription initiation. Genome Res. 2021;31:1546–60.
Article
Google Scholar
Hansel-Hertsch R, Beraldi D, Lensing SV, Marsico G, Zyner K, Parry A, et al. G-quadruplex structures mark human regulatory chromatin. Nat Genet. 2016;48:1267–72.
Article
CAS
Google Scholar
Raiber EA, Kranaster R, Lam E, Nikan M, Balasubramanian S. A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro. Nucleic Acids Res. 2012;40:1499–508.
Article
CAS
Google Scholar
Gao J, Zybailov BL, Byrd AK, Griffin WC, Chib S, Mackintosh SG, et al. Yeast transcription co-activator Sub1 and its human homolog PC4 preferentially bind to G-quadruplex DNA. Chem Commun (Camb). 2015;51:7242–4.
Article
CAS
Google Scholar
Li PT, Wang ZF, Chu IT, Kuan YM, Li MH, Huang MC, et al. Expression of the human telomerase reverse transcriptase gene is modulated by quadruplex formation in its first exon due to DNA methylation. J Biol Chem. 2017;292:20859–70.
Article
CAS
Google Scholar
Makowski MM, Grawe C, Foster BM, Nguyen NV, Bartke T, Vermeulen M. Global profiling of protein-DNA and protein-nucleosome binding affinities using quantitative mass spectrometry. Nat Commun. 2018;9:1653.
Article
Google Scholar
Agarwal T, Roy S, Kumar S, Chakraborty TK, Maiti S. In the sense of transcription regulation by G-quadruplexes: asymmetric effects in sense and antisense strands. Biochemistry. 2014;53:3711–8.
Article
CAS
Google Scholar
Belotserkovskii BP, Soo Shin JH, Hanawalt PC. Strong transcription blockage mediated by R-loop formation within a G-rich homopurine-homopyrimidine sequence localized in the vicinity of the promoter. Nucleic Acids Res. 2017;45:6589–99.
Article
CAS
Google Scholar
Lee CY, McNerney C, Ma K, Zhao W, Wang A, Myong S. R-loop induced G-quadruplex in non-template promotes transcription by successive R-loop formation. Nat Commun. 2020;11:3392.
Article
CAS
Google Scholar
Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–15.
Article
CAS
Google Scholar
Miyoshi D, Karimata H, Sugimoto N. Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions. J Am Chem Soc. 2006;128:7957–63.
Article
CAS
Google Scholar
Lago S, Nadai M, Cernilogar FM, Kazerani M, Dominiguez Moreno H, Schotta G, et al. Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome. Nat Commun. 2021;12:3885.
Article
CAS
Google Scholar
Rodriguez R, Miller KM, Forment JV, Bradshaw CR, Nikan M, Britton S, et al. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat Chem Biol. 2012;8:301–10.
Article
CAS
Google Scholar
Carvalho J, Mergny JL, Salgado GF, Queiroz JA, Cruz C. G-quadruplex, Friend or Foe: The Role of the G-quartet in Anticancer Strategies. Trends Mol Med. 2020;26:848–61.
Article
CAS
Google Scholar
Ruggiero E, Richter SN. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res. 2018;46:3270–83.
Article
CAS
Google Scholar
Spiegel J, Cuesta SM, Adhikari S, Hansel-Hertsch R, Tannahill D, Balasubramanian S. G-quadruplexes are transcription factor binding hubs in human chromatin. Genome Biol. 2021;22:117.
Article
CAS
Google Scholar
Ponka P. Cell biology of heme. Am J Med Sci. 1999;318:241–56.
Article
CAS
Google Scholar
Ponka P, Sheftel AD, English AM, Scott Bohle D, Garcia-Santos D. Do mammalian cells really need to export and import heme? Trends Biochem Sci. 2017;42:395–406.
Article
CAS
Google Scholar
DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475:106–9.
Article
CAS
Google Scholar
Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 2019;178:330–345 e322.
Article
CAS
Google Scholar
Sun J, Brand M, Zenke Y, Tashiro S, Groudine M, Igarashi K. Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc Natl Acad Sci U S A. 2004;101:1461–6.
Article
CAS
Google Scholar
Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell. 2019;178:316–329 e318.
Article
CAS
Google Scholar
Liao R, Zheng Y, Liu X, Zhang Y, Seim G, Tanimura N, et al. Discovering how heme controls genome function through heme-omics. Cell Rep. 2020;31:107832.
Article
CAS
Google Scholar
Tanimura N, Miller E, Igarashi K, Yang D, Burstyn JN, Dewey CN, et al. Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation. EMBO Rep. 2016;17:249–65.
Article
CAS
Google Scholar
Travascio P, Witting PK, Mauk AG, Sen D. The peroxidase activity of a hemin--DNA oligonucleotide complex: free radical damage to specific guanine bases of the DNA. J Am Chem Soc. 2001;123:1337–48.
Article
CAS
Google Scholar
Li Y, Sen D. A catalytic DNA for porphyrin metallation. Nat Struct Biol. 1996;3:743–7.
Article
CAS
Google Scholar
Gray LT, Puig Lombardi E, Verga D, Nicolas A, Teulade-Fichou MP, Londono-Vallejo A, et al. G-quadruplexes sequester free heme in living cells. Cell Chem Biol. 2019;26:1681–1691 e1685.
Article
CAS
Google Scholar
Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun. 1930;2019:10.
Google Scholar
Wang Q, Xiong H, Ai S, Yu X, Liu Y, Zhang J, et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol Cell. 2019;76:206–216 e207.
Article
CAS
Google Scholar
Gardner LC, Cox TM. Biosynthesis of heme in immature erythroid cells. The regulatory step for heme formation in the human erythron. J Biol Chem. 1988;263:6676–82.
Article
CAS
Google Scholar
Hopp MT, Schmalohr BF, Kuhl T, Detzel MS, Wissbrock A, Imhof D. Heme determination and quantification methods and their suitability for practical applications and everyday use. Anal Chem. 2020;92:9429–40.
Article
CAS
Google Scholar
Fyrestam J, Östman C. Determination of heme in microorganisms using HPLC-MS/MS and cobalt (III) protoporphyrin IX inhibition of heme acquisition in Escherichia coli. Anal Bioanal Chem. 2017;409:6999–7010.
Article
CAS
Google Scholar
Grand CL, Han H, Munoz RM, Weitman S, Von Hoff DD, Hurley LH, et al. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol Cancer Ther. 2002;1:565–73.
CAS
Google Scholar
Einarson OJ, Sen D. Self-biotinylation of DNA G-quadruplexes via intrinsic peroxidase activity. Nucleic Acids Res. 2017;45:9813–22.
Article
CAS
Google Scholar
Lat PK, Liu K, Kumar DN, Wong KKL, Verheyen EM, Sen D. High specificity and tight spatial restriction of self-biotinylation by DNA and RNA G-Quadruplexes complexed in vitro and in vivo with Heme. Nucleic Acids Res. 2020;48:5254–67.
Article
CAS
Google Scholar
Hansel-Hertsch R, Spiegel J, Marsico G, Tannahill D, Balasubramanian S. Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat Protoc. 2018;13:551–64.
Article
CAS
Google Scholar
Li C, Liang K: EGFP-BG4 staining of HeLa cells after Vehicle, PpIX or Hemin treatment. figshare; 2022. https://doi.org/10.6084/m9.figshare.21608100.v1.
Wang H, Li C, Liang K. Genome-wide native R-loop profiling by R-loop cleavage under targets and tagmentation (R-Loop CUT&Tag). Methods Mol Biol. 2022;2528:345–57.
Article
Google Scholar
Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev. 2004;18:1618–29.
Article
CAS
Google Scholar
De Magis A, Manzo SG, Russo M, Marinello J, Morigi R, Sordet O, et al. DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc Natl Acad Sci U S A. 2019;116:816–25.
Article
Google Scholar
Wang K, Wang H, Li C, Yin Z, Xiao R, Li Q, et al. Genomic profiling of native R loops with a DNA-RNA hybrid recognition sensor. Sci Adv. 2021;7(8):eabe3516.
Article
CAS
Google Scholar
Judd J, Wojenski LA, Wainman LM, Tippens ND, Rice EJ, Dziubek A, et al. A rapid, sensitive, scalable method for Precision Run-On sequencing (PRO-seq). bioRxiv. 2020:2020.05.18.102277.
Mohan M, Herz HM, Shilatifard A. SnapShot: histone lysine methylase complexes. Cell. 2012;149:498–498 e491.
Article
CAS
Google Scholar
Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem. 2012;81:65–95.
Article
CAS
Google Scholar
Delvecchio M, Gaucher J, Aguilar-Gurrieri C, Ortega E, Panne D. Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol. 2013;20:1040–6.
Article
CAS
Google Scholar
Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87:953–9.
Article
CAS
Google Scholar
Tripathi S, Pohl MO, Zhou Y, Rodriguez-Frandsen A, Wang G, Stein DA, et al. Meta- and orthogonal integration of influenza "OMICs" data defines a role for UBR4 in virus budding. Cell Host Microbe. 2015;18:723–35.
Article
CAS
Google Scholar
Bloomer JR. Liver metabolism of porphyrins and haem. J Gastroenterol Hepatol. 1998;13:324–9.
Article
CAS
Google Scholar
Berry MN, Friend DS. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969;43:506–20.
Article
CAS
Google Scholar
Kudira R, Sharma BK, Mullen M, Mohanty SK, Donnelly B, Tiao GM, et al. Isolation and culturing primary chaolangiocytes from mouse liver. Bio Protoc. 2021;11:e4192.
Article
CAS
Google Scholar
Schueler M, Munschauer M, Gregersen LH, Finzel A, Loewer A, Chen W, et al. Differential protein occupancy profiling of the mRNA transcriptome. Genome Biol. 2014;15:R15.
Article
Google Scholar
Cheng X, Liu X, Bing T, Cao Z, Shangguan D. General peroxidase activity of G-quadruplex-hemin complexes and its application in ligand screening. Biochemistry. 2009;48:7817–23.
Article
CAS
Google Scholar
Kosman J, Juskowiak B. Peroxidase-mimicking DNAzymes for biosensing applications: a review. Anal Chim Acta. 2011;707:7–17.
Article
CAS
Google Scholar
Smith E, Shilatifard A. Enhancer biology and enhanceropathies. Nat Struct Mol Biol. 2014;21:210–9.
Article
CAS
Google Scholar
Kyritsi K, Kennedy L, Meadows V, Hargrove L, Demieville J, Pham L, et al. Mast cells induce ductular reaction mimicking liver injury in mice through mast cell-derived transforming growth factor Beta 1 signaling. Hepatology. 2021;73:2397–410.
Article
CAS
Google Scholar
Fabregat I, Moreno-Caceres J, Sanchez A, Dooley S, Dewidar B, Giannelli G, et al. TGF-beta signalling and liver disease. FEBS J. 2016;283:2219–32.
Article
CAS
Google Scholar
Liang K, Woodfin AR, Slaughter BD, Unruh JR, Box AC, Rickels RA, et al. Mitotic transcriptional activation: clearance of actively engaged Pol II via transcriptional elongation control in mitosis. Mol Cell. 2015;60:435–45.
Article
CAS
Google Scholar
Ishida M, Dohmae N, Shiro Y, Isogai Y. Synthesis of biotinylated heme and its application to panning heme-binding proteins. Anal Biochem. 2003;321:138–41.
Article
CAS
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
Google Scholar
Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–5.
Article
CAS
Google Scholar
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.
Article
Google Scholar
Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011;27:1696–7.
Article
CAS
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
Article
Google Scholar
Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 2017;27:491–9.
Article
CAS
Google Scholar
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.
Article
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
Google Scholar
Li C, Liang K: EGFP-BG4 staining of HeLa cells after ALA treatment. figshare; 2022. https://doi.org/10.6084/m9.figshare.21608112.v1.
Li C, Liang K: EGFP-BG4 staining of primary mouse hepatocytes. figshare; 2022. https://doi.org/10.6084/m9.figshare.21608127.v1.
Teng Y, Xu Z, Zhao K, Zhong Y, Wang J, Zhao L, et al. Novel function of SART1 in HNF4α transcriptional regulation contributes to its antiviral role during HBV infection. J Hepatol. 2021;75:1072–82.
Article
CAS
Google Scholar
Liang K. G-quadruplexes sense natural porphyrin metabolites for regulation of gene transcription and chromatin landscapes. Gene Expression Omnibus. 2022; https://https.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE198658.