Martin WF, Garg S, Zimorski V. Endosymbiotic theories for eukaryote origin. Philos Trans R Soc Lond B Biol Sci. 2015;370(1678):20140330. https://doi.org/10.1098/rstb.2014.0330.
Article
CAS
PubMed
PubMed Central
Google Scholar
Archibald JM. Endosymbiosis and eukaryotic cell evolution. Current Biology. 2015;25(19):R911–R21. https://doi.org/10.1016/j.cub.2015.07.055.
Article
CAS
PubMed
Google Scholar
Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR. Mitochondrial origins. Proceedings of the National Academy of Sciences. 1985;82(13):4443–7. https://doi.org/10.1073/pnas.82.13.4443.
Article
CAS
Google Scholar
Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol. 2017;27(21):R1177–r92. https://doi.org/10.1016/j.cub.2017.09.015.
Article
CAS
PubMed
Google Scholar
Martin W, Müller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998;392(6671):37–41. https://doi.org/10.1038/32096.
Article
CAS
PubMed
Google Scholar
Martin W, Kowallik K. Annotated English translation of Mereschkowsky’s 1905 paper ‘Über Natur und Ursprung der Chromatophoren imPflanzenreiche’. European Journal of Phycology. 1999;34(3):287–95. https://doi.org/10.1080/09670269910001736342.
Article
Google Scholar
Archibald JM. Genomic perspectives on the birth and spread of plastids. Proceedings of the National Academy of Sciences. 2015;112(33):10147–53. https://doi.org/10.1073/pnas.1421374112.
Article
CAS
Google Scholar
Lane N, Martin WF. Eukaryotes really are special, and mitochondria are why. Proceed Natl Acad Sci. 2015;112(35):E4823–E.
Article
CAS
Google Scholar
Lane N, Martin W. The energetics of genome complexity. Nature. 2010;467(7318):929–34. https://doi.org/10.1038/nature09486.
Article
CAS
PubMed
Google Scholar
Lane N. Bioenergetic constraints on the evolution of complex life. Cold Spring Harb Perspect Biol. 2014;6(5):a015982. https://doi.org/10.1101/cshperspect.a015982.
Article
CAS
PubMed
PubMed Central
Google Scholar
Booth A, Doolittle WF. Eukaryogenesis, how special really? Proceedings of the National Academy of Sciences. 2015;112(33):10278–85. https://doi.org/10.1073/pnas.1421376112.
Article
CAS
Google Scholar
Booth A, Doolittle WF. Reply to Lane and Martin: Being and becoming eukaryotes. Proceed Natl Acad Sci. 2015;112(35):E4824–E.
Article
CAS
Google Scholar
Lynch M, Marinov GK. Membranes, energetics, and evolution across the prokaryote-eukaryote divide. eLife. 2017;6:e20437. https://doi.org/10.7554/eLife.20437.
Article
PubMed
PubMed Central
Google Scholar
Lynch M, Marinov GK. Response to Martin and colleagues: Mitochondria do not boost the bioenergetic capacity of eukaryotic cells. Biology Direct. 2018;13(1):26. https://doi.org/10.1186/s13062-018-0228-3.
Article
PubMed
PubMed Central
Google Scholar
Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proceedings of the National Academy of Sciences. 2018;115(25):6506–11. https://doi.org/10.1073/pnas.1711842115.
Article
CAS
Google Scholar
Gray MW, Burger G, Lang BF. Mitochondrial evolution. Science. 1999;283(5407):1476–81. https://doi.org/10.1126/science.283.5407.1476.
Article
CAS
PubMed
Google Scholar
Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet. 2004;5(2):123–35. https://doi.org/10.1038/nrg1271.
Article
CAS
PubMed
Google Scholar
Green BR. Chloroplast genomes of photosynthetic eukaryotes. Plant J. 2011;66(1):34–44. https://doi.org/10.1111/j.1365-313X.2011.04541.x.
Article
CAS
PubMed
Google Scholar
McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2012;10(1):13–26. https://doi.org/10.1038/nrmicro2670.
Article
CAS
Google Scholar
Lynch M, Koskella B, Schaack S. Mutation pressure and the evolution of organelle genomic architecture. Science. 2006;311(5768):1727–30. https://doi.org/10.1126/science.1118884.
Article
CAS
PubMed
Google Scholar
Smith DR. The mutational hazard hypothesis of organelle genome evolution: 10 years on. Mol Ecol. 2016;25(16):3769–75. https://doi.org/10.1111/mec.13742.
Article
PubMed
Google Scholar
Smith DR, Keeling PJ. Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proceedings of the National Academy of Sciences. 2015;112(33):10177–84. https://doi.org/10.1073/pnas.1422049112.
Article
CAS
Google Scholar
Brown JR. Ancient horizontal gene transfer. Nature Reviews Genetics. 2003;4(2):121–32. https://doi.org/10.1038/nrg1000.
Article
CAS
PubMed
Google Scholar
Dagan T, Roettger M, Stucken K, Landan G, Koch R, Major P, et al. Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biol Evol. 2013;5(1):31–44. https://doi.org/10.1093/gbe/evs117.
Article
CAS
PubMed
Google Scholar
Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik KV, Allen JF, et al. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Molecular Biology and Evolution. 2008;25(4):748–61. https://doi.org/10.1093/molbev/msn022.
Article
CAS
PubMed
Google Scholar
Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, et al. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proceedings of the National Academy of Sciences. 2002;99(19):12246–51. https://doi.org/10.1073/pnas.182432999.
Article
CAS
Google Scholar
Thiergart T, Landan G, Schenk M, Dagan T, Martin WF. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol Evol. 2012;4(4):466–85. https://doi.org/10.1093/gbe/evs018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calvo SE, Mootha VK. The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet. 2010;11(1):25–44. https://doi.org/10.1146/annurev-genom-082509-141720.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, et al. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics. 2010;9(6):1063–84. https://doi.org/10.1074/mcp.M900325-MCP200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell. 2013;153(7):1567–78. https://doi.org/10.1016/j.cell.2013.05.040.
Article
CAS
PubMed
Google Scholar
Nakayama T, Ishida K. Another acquisition of a primary photosynthetic organelle is underway in Paulinella chromatophora. Curr Biol. 2009;19(7):R284–5. https://doi.org/10.1016/j.cub.2009.02.043.
Article
CAS
PubMed
Google Scholar
Reyes-Prieto A, Yoon HS, Moustafa A, Yang EC, Andersen RA, Boo SM, et al. Differential gene retention in plastids of common recent origin. Mol Biol Evol. 2010;27(7):1530–7. https://doi.org/10.1093/molbev/msq032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nowack ECM, Vogel H, Groth M, Grossman AR, Melkonian M, Glöckner G. Endosymbiotic gene transfer and transcriptional regulation of transferred genes in Paulinella chromatophora. Mol Biol Evol. 2010;28(1):407–22. https://doi.org/10.1093/molbev/msq209.
Article
CAS
PubMed
Google Scholar
Singer A, Poschmann G, Mühlich C, Valadez-Cano C, Hänsch S, Hüren V, et al. Massive protein import into the early-evolutionary-stage photosynthetic organelle of the amoeba Paulinella chromatophora. Curr Biol. 2017;27(18):2763–73.e5.
Article
CAS
Google Scholar
Nowack ECM, Weber APM. GenomicsiInformed insights into endosymbiotic organelle evolution in photosynthetic eukaryotes. Ann Rev Plant Biol. 2018;69(1):51–84. https://doi.org/10.1146/annurev-arplant-042817-040209.
Article
CAS
Google Scholar
Nowack EC, Price DC, Bhattacharya D, Singer A, Melkonian M, Grossman AR. Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. Proc Natl Acad Sci U S A. 2016;113(43):12214–9. https://doi.org/10.1073/pnas.1608016113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daley DO, Whelan J. Why genes persist in organelle genomes. Genom Biol. 2005;6(5):110. https://doi.org/10.1186/gb-2005-6-5-110.
Article
CAS
Google Scholar
Herrmann R. Eukaryotism, towards a new interpretation. Eukaryotism and symbiosis: Springer; 1997. p. 73-118, DOI: https://doi.org/10.1007/978-3-642-60885-8_7.
Martin W, Herrmann RG. Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol. 1998;118(1):9–17. https://doi.org/10.1104/pp.118.1.9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reyes-Prieto A, Hackett JD, Soares MB, Bonaldo MF, Bhattacharya D. Cyanobacterial contribution to algal nuclear genomes is primarily limited to plastid functions. Curr Biol. 2006;16(23):2320–5. https://doi.org/10.1016/j.cub.2006.09.063.
Article
CAS
PubMed
Google Scholar
Speijer D, Hammond M, Lukeš J. Comparing early eukaryotic integration of mitochondria and chloroplasts in the light of internal ROS challenges: timing is of the essence. mBio. 2020;11(3):e00955–20. https://doi.org/10.1128/mBio.00955-20.
Article
PubMed
PubMed Central
Google Scholar
Allen JF, Raven JA. Free-radical-induced mutation vs redox regulation: costs and benefits of genes in organelles. J Mol Evol. 1996;42(5):482–92. https://doi.org/10.1007/BF02352278.
Article
CAS
PubMed
Google Scholar
Muller HJ. The relation of recombination to mutational advance. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1964;1(1):2–9. https://doi.org/10.1016/0027-5107(64)90047-8.
Article
Google Scholar
Lynch M. Mutation accumulation in transfer RNAs: molecular evidence for Muller’s ratchet in mitochondrial genomes. Mol Biol Evol. 1996;13(1):209–20. https://doi.org/10.1093/oxfordjournals.molbev.a025557.
Article
CAS
PubMed
Google Scholar
Neiman M, Taylor DR. The causes of mutation accumulation in mitochondrial genomes. Proceedings of the Royal Society B: Biological Sciences. 2009;276(1660):1201–9. https://doi.org/10.1098/rspb.2008.1758.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doolittle WF. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 1998;14(8):307–11. https://doi.org/10.1016/S0168-9525(98)01494-2.
Article
CAS
PubMed
Google Scholar
Huang CY, Grünheit N, Ahmadinejad N, Timmis JN, Martin W. Mutational decay and age of chloroplast and mitochondrial genomes transferred recently to angiosperm nuclear chromosomes. Plant Physiology. 2005;138(3):1723–33. https://doi.org/10.1104/pp.105.060327.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hazkani-Covo E, Martin WF. Quantifying the number of independent organelle DNA insertions in genome evolution and human health. Genome Biology and Evolution. 2017;9(5):1190–203. https://doi.org/10.1093/gbe/evx078.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hazkani-Covo E, Zeller RM, Martin W. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLOS Genetics. 2010;6(2):e1000834. https://doi.org/10.1371/journal.pgen.1000834.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin W. Gene transfer from organelles to the nucleus: frequent and in big chunks. Proceedings of the National Academy of Sciences. 2003;100(15):8612–4. https://doi.org/10.1073/pnas.1633606100.
Article
CAS
Google Scholar
Reyes-Prieto A. The basic genetic toolkit to move in with your photosynthetic partner. Frontiers in Ecology and Evolution. 2015;3(100).
Wolfe KH, Li WH, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceed Natl Acad Sci. 1987;84(24):9054–8. https://doi.org/10.1073/pnas.84.24.9054.
Article
CAS
Google Scholar
Smith DR. Mutation rates in plastid genomes: they are lower than you might think. Genome Biol Evol. 2015;7(5):1227–34. https://doi.org/10.1093/gbe/evv069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch M, Lynch PSTSM, Walsh B. The origins of genome architecture: Oxford University Press, Incorporated; 2007.
Grisdale CJ, Smith DR, Archibald JM. Relative mutation rates in nucleomorph-bearing algae. Genom Biol Evol. 2019;11(4):1045–53. https://doi.org/10.1093/gbe/evz056.
Article
CAS
Google Scholar
Drouin G, Daoud H, Xia J. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol Phylogenet Evol. 2008;49(3):827–31. https://doi.org/10.1016/j.ympev.2008.09.009.
Article
CAS
PubMed
Google Scholar
Lynch M. Mutation accumulation in nuclear, organelle, and prokaryotic transfer RNA genes. Mol Biol Evol. 1997;14(9):914–25. https://doi.org/10.1093/oxfordjournals.molbev.a025834.
Article
CAS
PubMed
Google Scholar
Khakhlova O, Bock R. Elimination of deleterious mutations in plastid genomes by gene conversion. The Plant Journal. 2006;46(1):85–94. https://doi.org/10.1111/j.1365-313X.2006.02673.x.
Article
CAS
PubMed
Google Scholar
Gallaher SD, Craig RJ, Ganesan I, Purvine SO, McCorkle SR, Grimwood J, et al. Widespread polycistronic gene expression in green algae. Proceed Natl Acad Sci. 2021;118(7):e2017714118. https://doi.org/10.1073/pnas.2017714118.
Article
CAS
Google Scholar
Guiliano DB, Blaxter ML. Operon conservation and the evolution of trans-splicing in the phylum Nematoda. PLoS Genet. 2006;2(11):e198. https://doi.org/10.1371/journal.pgen.0020198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michaeli S. Trans-splicing in trypanosomes: machinery and its impact on the parasite transcriptome. Future Microbiol. 2011;6(4):459–74. https://doi.org/10.2217/fmb.11.20.
Article
CAS
PubMed
Google Scholar
Gordon SP, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, et al. Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing. PLoS One. 2015;10(7):e0132628. https://doi.org/10.1371/journal.pone.0132628.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen JF. Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. Journal of Theoretical Biology. 1993;165(4):609–31. https://doi.org/10.1006/jtbi.1993.1210.
Article
CAS
PubMed
Google Scholar
Allen JF. Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression. Proc Natl Acad Sci U S A. 2015;112(33):10231–8. https://doi.org/10.1073/pnas.1500012112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen JF, Martin WF. Why have organelles retained genomes? Cell Systems. 2016;2(2):70–2. https://doi.org/10.1016/j.cels.2016.02.007.
Article
CAS
PubMed
Google Scholar
Johnston IG, Williams BP. Evolutionary inference across eukaryotes identifies specific pressures favoring mitochondrial gene retention. Cell Syst. 2016;2(2):101–11. https://doi.org/10.1016/j.cels.2016.01.013.
Article
CAS
PubMed
Google Scholar
Giannakis K, Arrowsmith SJ, Richards L, Gasparini S, Chustecki JM, Røyrvik EC, et al. Universal features shaping organelle gene retention. bioRxiv. 2021:2021.10.27.465964.
Cole LW. The evolution of per-cell organelle number. Front Cell Dev Biol. 2016;4:85. https://doi.org/10.3389/fcell.2016.00085.
Article
PubMed
PubMed Central
Google Scholar
Bendich AJ. Why do chloroplasts and mitochondria contain so many copies of their genome? Bioessays. 1987;6(6):279–82. https://doi.org/10.1002/bies.950060608.
Article
CAS
PubMed
Google Scholar
Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF. Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res. 2009;37(8):2539–48. https://doi.org/10.1093/nar/gkp100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch M, Marinov GK. The bioenergetic costs of a gene. Proceed Natl Acad Sci. 2015;112(51):15690–5. https://doi.org/10.1073/pnas.1514974112.
Article
CAS
Google Scholar
Ahmadinejad N, Dagan T, Gruenheit N, Martin W, Gabaldón T. Evolution of spliceosomal introns following endosymbiotic gene transfer. BMC Evol Biol. 2010;10(1):57. https://doi.org/10.1186/1471-2148-10-57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Backes S, Herrmann JM. Protein translocation into the intermembrane space and matrix of mitochondria: mechanisms and driving forces. Frontiers in Molecular Biosciences. 2017;4(83).
Shi L-X, Theg SM. Energetic cost of protein import across the envelope membranes of chloroplasts. Proceedings of the National Academy of Sciences. 2013;110(3):930–5. https://doi.org/10.1073/pnas.1115886110.
Article
Google Scholar
Mokranjac D, Neupert W. Energetics of protein translocation into mitochondria. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2008;1777(7):758–62. https://doi.org/10.1016/j.bbabio.2008.04.009.
Article
CAS
Google Scholar
Milo R. What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays. 2013;35(12):1050–5. https://doi.org/10.1002/bies.201300066.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, Herrmann CJ, Simonovic M, Szklarczyk D, von Mering C. Version 4.0 of PaxDb: protein abundance data, integrated across model organisms, tissues, and cell-lines. Proteomics. 2015;15(18):3163–8. https://doi.org/10.1002/pmic.201400441.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boisvert FM, Ahmad Y, Gierliński M, Charrière F, Lamont D, Scott M, et al. A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics. 2012;11(3):M111.011429. https://doi.org/10.1074/mcp.M111.011429.
Article
CAS
PubMed
Google Scholar
Gawron D, Ndah E, Gevaert K, Van Damme P. Positional proteomics reveals differences in N-terminal proteoform stability. Mol Syst Biol. 2016;12(2):858. https://doi.org/10.15252/msb.20156662.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin-Perez M, Villén J. Determinants and regulation of protein turnover in yeast. Cell Syst. 2017;5(3):283–94.e5.
Article
CAS
Google Scholar
Hartl DL, Moriyama EN, Sawyer SA. Selection intensity for codon bias. Genetics. 1994;138(1):227–34. https://doi.org/10.1093/genetics/138.1.227.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA, et al. Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet. 2004;74(6):1111–20. https://doi.org/10.1086/421051.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol Direct. 2012;7(1):11. https://doi.org/10.1186/1745-6150-7-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhuang X, Jiang L. Chloroplast degradation: multiple routes into the vacuole. Frontiers in Plant Science. 2019;10(359).
Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem. 2012;393(7):547–64. https://doi.org/10.1515/hsz-2012-0119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40(Database issue):D1178–86. https://doi.org/10.1093/nar/gkr944.
Article
CAS
PubMed
Google Scholar
Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, et al. Ensembl 2020. Nucleic Acids Res. 2020;48(D1):D682–d8. https://doi.org/10.1093/nar/gkz966.
Article
CAS
PubMed
Google Scholar
Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 2012;40(Database issue):D700–5. https://doi.org/10.1093/nar/gkr1029.
Article
CAS
PubMed
Google Scholar
Chen W-H, Lu G, Bork P, Hu S, Lercher MJ. Energy efficiency trade-offs drive nucleotide usage in transcribed regions. Nature Communications. 2016;7(1):11334. https://doi.org/10.1038/ncomms11334.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miyakawa I. Organization and dynamics of yeast mitochondrial nucleoids. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(5):339–59. https://doi.org/10.2183/pjab.93.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zoschke R, Liere K, Börner T. From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. The Plant Journal. 2007;50(4):710–22. https://doi.org/10.1111/j.1365-313X.2007.03084.x.
Article
CAS
PubMed
Google Scholar
Wiedemann N, Pfanner N. Mitochondrial machineries for protein import and assembly. Annual Review of Biochemistry. 2017;86(1):685–714. https://doi.org/10.1146/annurev-biochem-060815-014352.
Article
CAS
PubMed
Google Scholar
Jarvis P. Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytologist. 2008;179(2):257–85. https://doi.org/10.1111/j.1469-8137.2008.02452.x.
Article
CAS
Google Scholar
Soll J, Schleiff E. Protein import into chloroplasts. Nat Rev Mol Cell Biol. 2004;5(3):198–208. https://doi.org/10.1038/nrm1333.
Article
CAS
PubMed
Google Scholar
Schatz G, Dobberstein B. Common principles of protein translocation across membranes. Science. 1996;271(5255):1519–26. https://doi.org/10.1126/science.271.5255.1519.
Article
CAS
PubMed
Google Scholar
Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019;2(5).
Wagner A. Energy constraints on the evolution of gene expression. Molecular Biology and Evolution. 2005;22(6):1365–74. https://doi.org/10.1093/molbev/msi126.
Article
CAS
PubMed
Google Scholar
Uchida M, Sun Y, McDermott G, Knoechel C, Le Gros MA, Parkinson D, et al. Quantitative analysis of yeast internal architecture using soft X-ray tomography. Yeast. 2011;28(3):227–36. https://doi.org/10.1002/yea.1834.
Article
CAS
PubMed
Google Scholar
David H. Quantitative ultrastructural data of animal and human cells: Gustav Fischer; 1977.
Winter H, Robinson DG, Heldt HW. Subcellular volumes and metabolite concentrations in spinach leaves. Planta. 1994;193(4):530–5. https://doi.org/10.1007/BF02411558.
Article
CAS
Google Scholar
Wright S. Evolution in Mendelian populations. Genetics. 1931;16(2):97–159. https://doi.org/10.1093/genetics/16.2.97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fisher RAS. The genetical theory of natural selection. Oxford: Clarendon Press; 1930. https://doi.org/10.5962/bhl.title.27468.
Book
Google Scholar
Niklaus M, Kelly S. The molecular evolution of C4 photosynthesis: opportunities for understanding and improving the world’s most productive plants. J Exper Botany. 2018;70(3):795–804. https://doi.org/10.1093/jxb/ery416.
Article
CAS
Google Scholar
Lynch M, Conery JS. The origins of genome complexity. Science. 2003;302(5649):1401–4. https://doi.org/10.1126/science.1089370.
Article
CAS
PubMed
Google Scholar