Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJJ. CRISPR-Cas: Adapting to change. Science (80- ) [Internet]. 2017;356:eaal5056. Available from: http://www.sciencemag.org/lookup/doi/10.1126/science.aal5056.
Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science [Internet] American Association for the Advancement of Science. 2008;321:960–4 [cited 2018 Feb 21]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18703739.
Article
CAS
Google Scholar
Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature [Internet] Nature Research. 2015;526:55–61 [cited 2017 Jan 19]Available from: http://www.nature.com/doifinder/10.1038/nature15386.
CAS
Google Scholar
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83. https://doi.org/10.1038/s41579-019-0299-x.
Article
CAS
PubMed
Google Scholar
Krupovic M, Makarova KS, Forterre P, Prangishvili D, Koonin EV. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol. 2014;12(1). https://doi.org/10.1186/1741-7007-12-36.
Pourcel C, Touchon M, Villeriot N, Vernadet JP, Couvin D, Toffano-Nioche C, et al. CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Nucleic Acids Res. 2020;48(D1):D535–44. https://doi.org/10.1093/nar/gkz915.
Article
CAS
PubMed
Google Scholar
Hale CR, Duff MO, Graveley BR, Hale CR, Zhao P, Olson S, et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell [Internet]. 2009;139:945–56 Available from: https://doi.org/10.1016/j.cell.2009.07.040.
Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 2009;155(3):733–40. https://doi.org/10.1099/mic.0.023960-0.
Article
CAS
PubMed
Google Scholar
Gleditzsch D, Pausch P, Müller-Esparza H, Özcan A, Guo X, Bange G, et al. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA Biol [Internet]. 2019;16:504–17 Available from: https://www.tandfonline.com/doi/full/10.1080/15476286.2018.1504546.
Article
Google Scholar
Vink JNA, Martens KJA, Vlot M, McKenzie RE, Almendros C, Estrada Bonilla B, et al. Direct visualization of native CRISPR target search in live bacteria reveals cascade DNA surveillance mechanism. Mol Cell [Internet]. 2020;77:39–50.e10 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1097276519307993.
Article
CAS
Google Scholar
Xue C, Zhu Y, Zhang X, Shin YK, Sashital DG. Real-time observation of target search by the CRISPR surveillance complex cascade. Cell Rep. 2017;21(13):3717–27. https://doi.org/10.1016/j.celrep.2017.11.110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gasiunas G, Young JK, Karvelis T, Kazlauskas D, Urbaitis T, Jasnauskaite M, et al. A catalogue of biochemically diverse CRISPR-Cas9 orthologs. Nat Commun. 2020;11(1):5512. https://doi.org/10.1038/s41467-020-19344-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shiimori M, Garrett SC, Graveley BR, Terns MP. Cas4 nucleases define the PAM, length, and orientation of DNA fragments integrated at CRISPR loci. Mol Cell. 2018;70(5):814–824.e6. https://doi.org/10.1016/j.molcel.2018.05.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kieper SN, Almendros C, Behler J, McKenzie RE, Nobrega FL, Haagsma AC, et al. Cas4 facilitates PAM-compatible spacer selection during CRISPR adaptation. Cell Rep. 2018;22(13):3377–84. https://doi.org/10.1016/j.celrep.2018.02.103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee H, Zhou Y, Taylor DW, Sashital DG. Cas4-dependent prespacer processing ensures high-fidelity programming of CRISPR arrays. Mol Cell. 2018;70(1):48–59.e5. https://doi.org/10.1016/j.molcel.2018.03.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Musharova O, Sitnik V, Vlot M, Savitskaya E, Datsenko KA, Krivoy A, et al. Systematic analysis of Type I‐E Escherichia coli CRISPR‐Cas PAM sequences ability to promote interference and primed adaptation. Mol Microbiol [Internet]. 2019;111:1558–70. Available from: https://onlinelibrary.wiley.com/doi/10.1111/mmi.14237.
Cooper LA, Stringer AM, Wade JT. Determining the specificity of cascade binding, interference, and primed adaptation in vivo in the Escherichia coli type I-E CRISPR-Cas system. MBio [Internet] American Society for Microbiology. 2018;9:e02100–17 [cited 2018 Dec 28]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29666291.
CAS
Google Scholar
Hayes RP, Xiao Y, Ding F, van Erp PBG, Rajashankar K, Bailey S, et al. Structural basis for promiscuous PAM recognition in type I–E cascade from E. coli. Nature [Internet]. 2016;530:499–503. [cited 2017 Jan 17]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26863189.
Shah SA, Erdmann S, Mojica FJM, Garrett RA. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. 2013;10(5):891–9. https://doi.org/10.4161/rna.23764.
Article
CAS
PubMed
PubMed Central
Google Scholar
Artamonova D, Karneyeva K, Medvedeva S, Klimuk E, Kolesnik M, Yasinskaya A, et al. Spacer acquisition by Type III CRISPR–Cas system during bacteriophage infection of Thermus thermophilus. Nucleic Acids Res [Internet]. 2020;48:9787–803. Available from: https://academic.oup.com/nar/article/48/17/9787/5895334.
Goldberg GW, Jiang W, Bikard D, Marraffini LA. Conditional tolerance of temperate phages via transcriptiondependent CRISPR-Cas targeting. Nature [Internet]. 2014;514:633–7. Available from: http://www.nature.com/articles/nature13637.
Cao L, Gao CH, Zhu J, Zhao L, Wu Q, Li M, et al. Identification and functional study of type III-A CRISPR-Cas systems in clinical isolates of Staphylococcus aureus. Int J Med Microbiol. 2016;306(8):686–96. https://doi.org/10.1016/j.ijmm.2016.08.005.
Article
CAS
PubMed
Google Scholar
Silas S, Mohr G, Sidote DJ, Markham LM, Sanchez-Amat A, Bhaya D, et al. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science (80- ) [Internet]. 2016;351:aad4234. Available from: https://www.sciencemag.org/lookup/doi/10.1126/science.aad4234.
Westra ER, Buckling A, Fineran PC. CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol. 2014;12(5):317–26. https://doi.org/10.1038/nrmicro3241.
Article
CAS
PubMed
Google Scholar
Wimmer F, Beisel CL. CRISPR-Cas Systems and the Paradox of Self-Targeting Spacers. Front Microbiol [Internet]. 2020;10. Available from: https://www.frontiersin.org/article/10.3389/fmicb.2019.03078/full.
Bernheim A, Bikard D, Touchon M, Rocha EPC. Atypical organizations and epistatic interactions of CRISPRs and cas clusters in genomes and their mobile genetic elements. Nucleic Acids Res [Internet]. 2020;48:748–60. Available from: https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkz1091/5634034.
Vale PF, Lafforgue G, Gatchitch F, Gardan R, Moineau S, Gandon S. Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proc R Soc B Biol Sci. 2015;282(1812):20151270. https://doi.org/10.1098/rspb.2015.1270.
Article
CAS
Google Scholar
Nobrega F, Walinga H, Dutilh B, Brouns S. Prophages are associated with extensive, tolerated CRISPR-Cas auto-immunity. bioRxiv Cold Spring Harbor Laboratory. 2020;2020(03):02.973784.
Google Scholar
Pawluk A, Davidson AR, Maxwell KL. Anti-CRISPR: discovery, mechanism and function; 2017.
Google Scholar
Silas S, Lucas-Elio P, Jackson SA, Aroca-Crevillén A, Hansen LL, Fineran PC, et al. Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems. Elife [Internet]. 2017;6. Available from: https://elifesciences.org/articles/27601.
Hoikkala V, Ravantti J, Díez-Villaseñor C, Tiirola M, Conrad RA, McBride MJ, et al. Cooperation between different CRISPR-Cas types enables adaptation in an RNA-targeting system. Fineran Julian PCP, editor. MBio [Internet]. 2021;12:e03338-e03320. Available from: http://mbio.asm.org/content/12/2/e03338-20.abstract
Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L, Sørensen SJ, et al. Type IV CRISPR–Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res [Internet]. 2020;48:2000–12. Available from: https://academic.oup.com/nar/article/48/4/2000/5687823.
Mendoza SD, Nieweglowska ES, Govindarajan S, Leon LM, Berry JD, Tiwari A, et al. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature. 2020;577(7789):244–8. https://doi.org/10.1038/s41586-019-1786-y.
Article
CAS
PubMed
Google Scholar
Malone LM, Warring SL, Jackson SA, Warnecke C, Gardner PP, Gumy LF, et al. A jumbo phage that forms a nucleus-like structure evades CRISPR–Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat Microbiol [Internet]. 2020;5:48–55. Available from: http://www.nature.com/articles/s41564-019-0612-5.
Walton RT, Hsu JY, Joung JK, Kleinstiver BP. Scalable characterization of the PAM requirements of CRISPR–Cas enzymes using HT-PAMDA. Nat Protoc [Internet]. England; 2021;16:1511–47. Available from: http://www.nature.com/articles/s41596-020-00465-2.
Marshall R, Maxwell CS, Collins SP, Jacobsen T, Luo ML, Begemann MB, et al. Rapid and Scalable Characterization of CRISPR Technologies Using an E. coli Cell-Free Transcription-Translation System. Mol Cell [Internet]. 2018;69:146-157.e3. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1097276517309358.
Soto-Perez P, Bisanz JE, Berry JD, Lam KN, Bondy-Denomy J, Turnbaugh PJ. CRISPR-Cas system of a prevalent human gut bacterium reveals hyper-targeting against phages in a human virome catalog. Cell Host Microbe [Internet]. 2019;26:325–335.e5 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1931312819304172.
Article
CAS
Google Scholar
Dion MB, Plante P-L, Zufferey E, Shah SA, Corbeil J, Moineau S. Streamlining CRISPR spacer-based bacterial host predictions to decipher the viral dark matter. Nucleic Acids Res [Internet]. 2021;49:3127–38. Available from: https://academic.oup.com/nar/article/49/6/3127/6157093.
Camarillo-Guerrero LF, Almeida A, Rangel-Pineros G, Finn RD, Lawley TD. Massive expansion of human gut bacteriophage diversity. Cell [Internet]. 2021;184:1098-1109.e9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0092867421000726.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol [Internet]. 1990;215:403–10. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022283605803602.
Shmakov SA, Sitnik V, Makarova KS, Wolf YI, Severinov K V., Koonin E V. The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes. Gilmore MS, editor. MBio [Internet]. 2017;8. Available from: https://journals.asm.org/doi/10.1128/mBio.01397-17.
Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol [Internet]. 2008;190:1390–400 Available from: http://jb.asm.org/cgi/doi/10.1128/JB.01412-07.
Article
CAS
Google Scholar
Horvath P, Romero DA, Coûté-Monvoisin AC, Richards M, Deveau H, Moineau S, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol. 2008;190(4):1401–12. https://doi.org/10.1128/JB.01415-07.
Article
CAS
PubMed
Google Scholar
Bolotin A, Quinquis B, Sorokin A, Dusko ES. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151(8):2551–61. https://doi.org/10.1099/mic.0.28048-0.
Article
CAS
PubMed
Google Scholar
Fischer S, Maier LK, Stoll B, Brendel J, Fischer E, Pfeiffer F, et al. An archaeal immune system can detect multiple protospacer adjacent motifs (PAMs) to target invader DNA. J Biol Chem. 2012;287(40):33351–63. https://doi.org/10.1074/jbc.M112.377002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leenay RT, Maksimchuk KR, Slotkowski RA, Agrawal RN, Gomaa AA, Briner AE, et al. Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol Cell. 2016;62(1):137–47. https://doi.org/10.1016/j.molcel.2016.02.031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders C, Niewoehner O, Duerst A, Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. 2014;513(7519):569–73. https://doi.org/10.1038/nature13579.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendoza BJ, Trinh CT. In silico processing of the complete CRISPR-Cas spacer space for identification of PAM sequences. Biotechnol J. 2018;13(9):1700595. https://doi.org/10.1002/biot.201700595.
Article
CAS
Google Scholar
Swarts DC, Mosterd C, van Passel MWJ, Brouns SJJ. CRISPR interference directs strand specific spacer acquisition. PLoS One [Internet] Public Library of Science. 2012;7:e35888 Available from: https://doi.org/10.1371/journal.pone.0035888.
Article
CAS
Google Scholar
Richter C, Dy RL, McKenzie RE, Watson BNJ, Taylor C, Chang JT, et al. Priming in the type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. 2014;42(13):8516–26. https://doi.org/10.1093/nar/gku527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hupfeld M, Trasanidou D, Ramazzini L, Klumpp J, Loessner MJ, Kilcher S. A functional type II-A CRISPR–Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage. Nucleic Acids Res [Internet]. 2018;46:6920–33. Available from: https://academic.oup.com/nar/article/46/13/6920/5042795.
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science (80- ) [Internet]. 2012;337:816–21. Available from: https://www.sciencemag.org/lookup/doi/10.1126/science.1225829.
Alkhnbashi OS, Shah SA, Garrett RA, Saunders SJ, Costa F, Backofen R. Characterizing leader sequences of CRISPR loci. Bioinformatics [Internet]. 2016;32:i576–85. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw454.
Milicevic O, Repac J, Bozic B, Djordjevic M, Djordjevic M. A Simple Criterion for Inferring CRISPR Array Direction. Front Microbiol [Internet]. 2019;10. Available from: https://www.frontiersin.org/article/10.3389/fmicb.2019.02054/full.
Biswas A, Fineran PC, Brown CM. Accurate computational prediction of the transcribed strand of CRISPR noncoding RNAs. Bioinformatics [Internet]. 2014;30:1805–13. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btu114.
Houenoussi K, Boukheloua R, Vernadet J-P, Gautheret D, Vergnaud G, Pourcel C. TOP the Transcription Orientation Pipeline and its use to investigate the transcription of non-coding regions: assessment with CRISPR direct repeats and intergenic sequences. bioRxiv [Internet]. 2020;2020:01.15.903914 Available from: http://biorxiv.org/content/early/2020/01/15/2020.01.15.903914.abstract.
Google Scholar
Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J, Néron B, et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46(W1):W246–51. https://doi.org/10.1093/nar/gky425.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lange SJ, Alkhnbashi OS, Rose D, Will S, Backofen R. CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems. Nucleic Acids Res. 2013;41(17):8034–44. https://doi.org/10.1093/nar/gkt606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leenay RT, Beisel CL. Deciphering, communicating, and engineering the CRISPR PAM. J Mol Biol. 2017;429(2):177–91. https://doi.org/10.1016/j.jmb.2016.11.024.
Article
CAS
PubMed
Google Scholar
Xiao G, Yi Y, Che R, Zhang Q, Imran M, Khan A, et al. Characterization of CRISPR‐Cas systems in Leptospira reveals potential application of CRISPR in genotyping of Leptospira interrogans. APMIS [Internet]. 2019;127:202–16. Available from: https://onlinelibrary.wiley.com/doi/10.1111/apm.12935.
Lillestøl RK, Shah SA, Brügger K, Redder P, Phan H, Christiansen J, et al. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol Microbiol. 2009;72(1):259–72. https://doi.org/10.1111/j.1365-2958.2009.06641.x.
Article
CAS
PubMed
Google Scholar
Manica A, Zebec Z, Teichmann D, Schleper C. In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon. Mol Microbiol [Internet]. 2011;80:481–91. Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2011.07586.x.
Boudry P, Semenov E, Monot M, Datsenko KA, Lopatina A, Sekulovic O, et al. Function of the CRISPR-cas system of the human pathogen: Clostridium difficile. MBio. 2015;6(5). https://doi.org/10.1128/mBio.01508-15.
Li M, Wang R, Zhao D, Xiang H. Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res [Internet]. 2014;42:2483–92. Available from: https://academic.oup.com/nar/article/42/4/2483/2435586.
Walker JE, Lanahan AA, Zheng T, Toruno C, Lynd LR, Cameron JC, et al. Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum. Metab Eng Commun [Internet]. 2020;10:e00116. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2214030119300239.
Lin J, Fuglsang A, Kjeldsen AL, Sun K, Bhoobalan-Chitty Y, Peng X. DNA targeting by subtype I-D CRISPR–Cas shows type I and type III features. Nucleic Acids Res [Internet]. 2020;48:10470–8. Available from: https://academic.oup.com/nar/article/48/18/10470/5909925.
Pan M, Nethery MA, Hidalgo-Cantabrana C, Barrangou R. Comprehensive Mining and Characterization of CRISPR-Cas Systems in Bifidobacterium. Microorganisms [Internet]. 2020;8:720. Available from: https://www.mdpi.com/2076-2607/8/5/720.
Pujato S, Galliani V, Irazoqui JM, Amadío A, Quiberoni A, Mercanti D. Analysis of CRISPR systems of types IIA, I-E and I-C in strains of Lacticaseibacillus. Int Dairy J [Internet]. 2021;118:105027. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0958694621000558.
Almendros C, Guzmán NM, Díez-Villaseñor C, García-Martínez J, Mojica FJM. Target Motifs Affecting Natural Immunity by a Constitutive CRISPR-Cas System in Escherichia coli. Mokrousov I, editor. PLoS One [Internet]. 2012;7:e50797. Available from: https://dx.plos.org/10.1371/journal.pone.0050797.
Almendros C, Nobrega FL, McKenzie RE, Brouns SJJ. Cas4-Cas1 fusions drive efficient PAM selection and control CRISPR adaptation. Nucleic Acids Res. 2019;47(10):5223–30. https://doi.org/10.1093/nar/gkz217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crawley AB, Henriksen ED, Stout E, Brandt K, Barrangou R. Characterizing the activity of abundant, diverse and active CRISPR-Cas systems in lactobacilli. Sci Rep. 2018;8(1):11544. https://doi.org/10.1038/s41598-018-29746-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magadán AH, Dupuis MÈ, Villion M, Moineau S. Cleavage of phage DNA by the Streptococcus thermophilus CRISPR3-Cas system. PLoS One. 2012;7(7):e40913. https://doi.org/10.1371/journal.pone.0040913.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mir A, Edraki A, Lee J, Sontheimer EJ. Type II-C CRISPR-Cas9 biology, mechanism, and application. ACS Chem Biol. 2018;13(2):357–65. https://doi.org/10.1021/acschembio.7b00855.
Article
CAS
PubMed
Google Scholar
Qiuyan Wang XB, Du J, Lu Y, Tao L, Xie T. PAM-interacting domain swapping is extensively utilized in nature to evolve CRISPR-Cas9 nucleases with altered PAM specificities. bioRxiv. 2021.
Elmore JR, Sheppard NF, Ramia N, Deighan T, Li H, Terns RM, et al. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR–Cas system. Genes Dev [Internet]. 2016;30:447–59. Available from: http://genesdev.cshlp.org/lookup/doi/10.1101/gad.272153.115.
Deng L, Garrett RA, Shah SA, Peng X, She Q. A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol Microbiol [Internet]. 2013;87:1088–99. Available from: https://onlinelibrary.wiley.com/doi/10.1111/mmi.12152.
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol [Internet] Nature Research. 2015;13:722–36 [cited 2017 Jan 17]. Available from: http://www.nature.com/doifinder/10.1038/nrmicro3569.
Article
CAS
Google Scholar
Westra ER, Semenova E, Datsenko KA, Jackson RN, Wiedenheft B, Severinov K, et al. Type I-E CRISPR-Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. Viollier PH, editor. PLoS Genet [Internet] Public Library of Science; 2013;9:e1003742. [cited 2017 Jan 17]. Available from: http://dx.plos.org/10.1371/journal.pgen.1003742
Johnson K, Learn BA, Estrella MA, Bailey S. Target sequence requirements of a type III-B CRISPR-Cas immune system. J Biol Chem [Internet] Elsevier. 2019;294:10290–9 Available from: https://doi.org/10.1074/jbc.RA119.008728.
Article
CAS
Google Scholar
Marraffini LA, Sontheimer EJ. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature [Internet]. 2010;463:568–71 Available from: https://doi.org/10.1038/nature08703.
Article
CAS
Google Scholar
Lopatina A, Medvedeva S, Artamonova D, Kolesnik M, Sitnik V, Ispolatov Y, et al. Natural diversity of CRISPR spacers of Thermus: evidence of local spacer acquisition and global spacer exchange. Philos Trans R Soc B Biol Sci. 2019;374(1772):20180092. https://doi.org/10.1098/rstb.2018.0092.
Article
CAS
Google Scholar
Garcia-Heredia I, Martin-Cuadrado AB, Mojica FJM, Santos F, Mira A, Antón J, et al. Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS One. 2012;7(3):e33802. https://doi.org/10.1371/journal.pone.0033802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf YI, Silas S, Wang Y, Wu S, Bocek M, Kazlauskas D, et al. Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. Nat Microbiol [Internet]. 2020;5:1262–70. Available from: http://www.nature.com/articles/s41564-020-0755-4.
Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. Expansion of known ssRNA phage genomes: from tens to over a thousand. Sci Adv. 2020;6(6):eaay5981. https://doi.org/10.1126/sciadv.aay5981.
Article
CAS
PubMed
PubMed Central
Google Scholar
Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Mojica FJM, Wolf YI, et al. Evolution and classification of the CRISPR–Cas systems. Nat Publ Gr [Internet]. Nat Publ Group. 2011;9(6):467–77. Available from: https://doi.org/10.1038/nrmicro2577.
CAS
Google Scholar
Lee H, Dhingra Y, Sashital DG. The Cas4-Cas1-Cas2 complex mediates precise prespacer processing during CRISPR adaptation. Elife [Internet]. 2019;8. Available from: https://elifesciences.org/articles/44248.
Wang J, Li J, Zhao H, Wang M, Yin M, Wang Y, et al. Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell [Internet] Elsevier Inc. 2015:1–14 Available from: https://doi.org/10.1016/j.cell.2015.10.008.
Jore MM, Lundgren M, Van Duijn E, Bultema JB, Westra ER, Waghmare SP, et al. Structural basis for CRISPR RNA-guided DNA recognition by cascade. Nat Struct Mol Biol [Internet] Nature Research. 2011;18:529–36 [cited 2017 Jan 17]. Available from: http://www.nature.com/doifinder/10.1038/nsmb.2019.
Article
CAS
Google Scholar
Clarke R, Heler R, MacDougall MS, Yeo NC, Chavez A, Regan M, et al. Enhanced bacterial immunity and mammalian genome editing via RNA-polymerase-mediated dislodging of Cas9 from double-strand DNA breaks. Mol Cell. 2018;71(1):42–55.e8. https://doi.org/10.1016/j.molcel.2018.06.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. Co-Orientation of Replication and Transcription Preserves Genome Integrity. Moran NA, editor. PLoS Genet [Internet]. 2010;6:e1000810. Available from: https://dx.plos.org/10.1371/journal.pgen.1000810.
Brewer BJ. When polymerases collide: Replication and the transcriptional organization of the E. coli chromosome. Cell [Internet]. 1988;53:679–86. Available from:https://linkinghub.elsevier.com/retrieve/pii/0092867488900864.
Majumdar S, Zhao P, Pfister NT, Compton M, Olson S, Glover CVC, et al. Three CRISPR-Cas immune effector complexes coexist in Pyrococcus furiosus. RNA [Internet]. 2015;21:1147–58. Available from: http://rnajournal.cshlp.org/lookup/doi/10.1261/rna.049130.114.
Manica A, Zebec Z, Steinkellner J, Schleper C. Unexpectedly broad target recognition of the CRISPR-mediated virus defence system in the archaeon Sulfolobus solfataricus. Nucleic Acids Res [Internet]. 2013;41:10509–17. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkt767.
Anderson EM, Haupt A, Schiel JA, Chou E, Machado HB, Strezoska Ž, et al. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity. J Biotechnol. 2015;211:56–65. https://doi.org/10.1016/j.jbiotec.2015.06.427.
Article
CAS
PubMed
Google Scholar
Fineran PC, Gerritzen MJH, Suarez-Diez M, Kunne T, Boekhorst J, van Hijum S a FT, et al. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci [Internet]. 2014;111:1629–38 Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1400071111.
Article
Google Scholar
Chen H, Mayer A, Balasubramanian V. A scaling law in CRISPR repertoire sizes arises from avoidance of autoimmunity. bioRxiv [Internet]. 2021;2021:01.04.425308 Available from: http://biorxiv.org/content/early/2021/01/04/2021.01.04.425308.abstract.
Google Scholar
Nicholson TJ, Jackson SA, Croft BI, Staals RHJ, Fineran PC, Brown CM. Bioinformatic evidence of widespread priming in type I and II CRISPR-Cas systems. RNA Biol. 2019;16(4):566–76. https://doi.org/10.1080/15476286.2018.1509662.
Article
PubMed
Google Scholar
Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun [Internet]. 2012;3:945. Available from: http://www.nature.com/articles/ncomms1937.
Kazlauskiene M, Kostiuk G, Venclovas Č, Tamulaitis G, Siksnys V. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science (80- ). 2017;357:605–9.
Article
CAS
Google Scholar
Niewoehner O, Garcia-Doval C, Rostøl JT, Berk C, Schwede F, Bigler L, et al. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers. Nature. 2017;548(7669):543–8. https://doi.org/10.1038/nature23467.
Article
CAS
PubMed
Google Scholar
Federhen S. The NCBI Taxonomy database. Nucleic Acids Res. 2012;40(D1):D136–43. https://doi.org/10.1093/nar/gkr1178.
Article
CAS
PubMed
Google Scholar
Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2005;33(Database issue):D501–4. https://doi.org/10.1093/nar/gki025.
Article
CAS
PubMed
Google Scholar
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, et al. GenBank. Nucleic Acids Res [Internet]. 2018;46:D41–7. Available from: http://academic.oup.com/nar/article/46/D1/D41/4621329.
Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res [Internet]. 2009;37:D5–15. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkn741.
Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(W1):W16–21. https://doi.org/10.1093/nar/gkw387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res [Internet]. 2020;48:D570–8 Available from: https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkz1035/5614179.
CAS
Google Scholar
Chen IMA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 2017;45(D1):D507–16. https://doi.org/10.1093/nar/gkw929.
Article
CAS
PubMed
Google Scholar
Paez-Espino D, Roux S, Chen I-MA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res [Internet]. 2019;47:D678–86. Available from: https://academic.oup.com/nar/article/47/D1/D678/5165269.
Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The NIH Human Microbiome Project. Genome Res [Internet]. 2009;19:2317–23. Available from:http://genome.cshlp.org/cgi/doi/10.1101/gr.096651.109.
Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell Cell Press. 2019;176:649–662.e20.
CAS
Google Scholar
Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25(11):1422–3. https://doi.org/10.1093/bioinformatics/btp163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collias D, Beisel CL. CRISPR technologies and the search for the PAM-free nuclease. Nat Commun [Internet]. 2021;12:555 Available from: https://doi.org/10.1038/s41467-020-20633-y.
Article
CAS
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2. https://doi.org/10.1093/bioinformatics/bts565.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alkhnbashi OS, Costa F, Shah SA, Garrett RA, Saunders SJ, Backofen R. CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. Bioinformatics. 2014;30(17):i489–96. https://doi.org/10.1093/bioinformatics/btu459.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990;18(20):6097–100. https://doi.org/10.1093/nar/18.20.6097.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11(1). https://doi.org/10.1186/1471-2105-11-119.