Burgess MG, Gaines SD. The scale of life and its lessons for humanity. Proc Natl Acad Sci. 2018;115:6328–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shukla PR, Skea J, Buendia EC, Masson-Delmotte V, Pörtner H-O, Roberts DC, et al. IPCC, 2019: Summary for Policymakers. In: Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. 2019. https://www.ipcc.ch/srccl/chapter/summary-for-policymakers.
Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, et al. Global biodiversity scenarios for the year 2100. Science. 2000;287:1770–1774.
Surfing the genomic new wave. Nat Plants. 2018;4:393–3.https://www.nature.com/articles/s41477-018-0209-7.
Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet. 2020;21:597–614.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miga KH, Koren S, Rhie A, Vollger MR, Gershman A, Bzikadze A, et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature. 2020;585:79–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018;36:338–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol. 2019;37:1155–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jung H, Winefield C, Bombarely A, Prentis P, Waterhouse P. Tools and strategies for long-read sequencing and de novo assembly of plant genomes. Trends Plant Sci. 2019;24:700–24.
Article
CAS
PubMed
Google Scholar
Ou S, Liu J, Chougule KM, Fungtammasan A, Seetharam AS, Stein JC, et al. Effect of sequence depth and length in long-read assembly of the maize inbred NC358. Nat Commun. 2020;11:2288.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Seetharam AS, Chougule K, Ou S, Swentowsky KW, Gent JI, et al. Gapless assembly of maize chromosomes using long-read technologies. Genome Biol. 2020;21:121.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inglis PW, de Pappas MCR, Resende LV, Grattapaglia D. Fast and inexpensive protocols for consistent extraction of high quality DNA and RNA from challenging plant and fungal samples for high-throughput SNP genotyping and sequencing applications. PLOS ONE. 2018;13:e0206085.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mayjonade B, Gouzy J, Donnadieu C, Pouilly N, Marande W, Callot C, et al. Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules. BioTechniques. 2016;61:203–5.
Article
CAS
PubMed
Google Scholar
Vaillancourt B, Buell CR. High molecular weight DNA isolation method from diverse plant species for use with Oxford Nanopore sequencing. 2019; Available from: http://biorxiv.org/lookup/doi/10.1101/783159.
Varma A, Padh H, Shrivastava N. Plant genomic DNA isolation: an art or a science. Biotechnol J. 2007;2:386–92.
Article
CAS
PubMed
Google Scholar
Zhang M, Zhang Y, Scheuring CF, Wu C-C, Dong JJ, Zhang H-B. Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research. Nat Protoc. 2012;7:467–78.
Article
CAS
PubMed
Google Scholar
Healey A, Furtado A, Cooper T, Henry RJ. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods. 2014;10:21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J, Crandall KA, et al. Earth BioGenome project: sequencing life for the future of life. Proc Natl Acad Sci. 2018;115:4325–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng S, Melkonian M, Smith SA, Brockington S, Archibald JM, Delaux P-M, et al. 10KP: a phylodiverse genome sequencing plan. GigaScience. 2018;7:1–9.
Article
CAS
PubMed
Google Scholar
Debieu M, Kanfany G, Laplaze L. Pearl millet genome: lessons from a tough crop. Trends Plant Sci. 2017;22:911–3.
Article
CAS
PubMed
Google Scholar
Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, et al. Improved maize reference genome with single-molecule technologies. Nature. 2017;546:524–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–5.
Article
CAS
PubMed
Google Scholar
Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, et al. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol. 2017;35:969–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhuang W, Chen H, Yang M, Wang J, Pandey MK, Zhang C, et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet. 2019;51:865–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, et al. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet. 2019;51:877–84.
Article
CAS
PubMed
Google Scholar
Zhang L, Cai X, Wu J, Liu M, Grob S, Cheng F, et al. Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Hortic Res. 2018;5:1–11.
Article
CAS
Google Scholar
Li P, Su T, Zhao X, Wang W, Zhang D, Yu Y, et al. Assembly of the non-heading pak choi genome and comparison with the genomes of heading Chinese cabbage and the oilseed yellow sarson. Plant Biotechnol J. 2021;19:966–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barchi L, Pietrella M, Venturini L, Minio A, Toppino L, Acquadro A, et al. A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Sci Rep. 2019;9:11769.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pearlstein SL, Felger RS, Glenn EP, Harrington J, Al-Ghanem KA, Nelson SG. Nipa (Distichlis palmeri): a perennial grain crop for saltwater irrigation. J Arid Environ. 2012;82:60–70.
Article
Google Scholar
Glenn EP, Anday T, Chaturvedi R, Martinez-Garcia R, Pearlstein S, Soliz D, et al. Three halophytes for saline-water agriculture: an oilseed, a forage and a grain crop. Environ Exp Bot. 2013;92:110–21.
Article
Google Scholar
Reddy MP, Shah MT, Patolia JS. Salvadora persica, a potential species for industrial oil production in semiarid saline and alkali soils. Ind Crops Prod. 2008;28:273–8.
Article
CAS
Google Scholar
Monfared MA, Samsampour D, Sharifi-Sirchi GR, Sadeghi F. Assessment of genetic diversity in Salvadora persica L. based on inter simple sequence repeat (ISSR) genetic marker. J Genet Eng Biotechnol. 2018;16:661–7.
Article
PubMed
PubMed Central
Google Scholar
Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, et al. The genome of Eucalyptus grandis. Nature. 2014;510:356–62.
Article
CAS
PubMed
Google Scholar
Schalamun M, Nagar R, Kainer D, Beavan E, Eccles D, Rathjen JP, et al. Harnessing the MinION: an example of how to establish long-read sequencing in a laboratory using challenging plant tissue from Eucalyptus pauciflora. Mol Ecol Resour. 2019;19:77–89.
Article
PubMed
Google Scholar
Hirakawa H, Nakamura Y, Kaneko T, Isobe S, Sakai H, Kato T, et al. Survey of the genetic information carried in the genome of Eucalyptus camaldulensis. Plant Biotechnol. 2011;28:471–80.
Article
CAS
Google Scholar
Wang W, Das A, Kainer D, Schalamun M, Morales-Suarez A, Schwessinger B, et al. The draft nuclear genome assembly of Eucalyptus pauciflora: a pipeline for comparing de novo assemblies. GigaScience. 2020;9:1–12.
Google Scholar
Choi JY, Lye ZN, Groen SC, Dai X, Rughani P, Zaaijer S, et al. Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice. Genome Biol. 2020;21:21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belser C, Istace B, Denis E, Dubarry M, Baurens F-C, Falentin C, et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat Plants. 2018;4:879–87.
Article
CAS
PubMed
Google Scholar
Simbolo M, Gottardi M, Corbo V, Fassan M, Mafficini A, Malpeli G, et al. DNA qualification workflow for next generation sequencing of histopathological samples. PLOS ONE. 2013;8:e62692.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pacific Biosciences. Guide - step-by-step run performance evaluation. 2020. Available from: https://www.pacb.com/documentation/guide-step-by-step-run-performance-evaluation/.
Fukasawa Y, Ermini L, Wang H, Carty K, Cheung M-S. LongQC: a quality control tool for third generation sequencing long read data. G3 Genes Genomes Genet. 2020;10:1193–6.
CAS
Google Scholar
Zhang L, Yang X, Tian L, Chen L, Yu W. Identification of peanut (Arachis hypogaea) chromosomes using a fluorescence in situ hybridization system reveals multiple hybridization events during tetraploid peanut formation. New Phytol. 2016;211:1424–39.
Article
CAS
PubMed
Google Scholar
Ranallo-Benavidez TR, Jaron KS, Schatz MC. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat Commun. 2020;11:1432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA, Grothe R, et al. HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads. Genome Res. 2020;30:1291–305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18:170–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murigneux V, Rai SK, Furtado A, Bruxner TJC, Tian W, Harliwong I, et al. Comparison of long-read methods for sequencing and assembly of a plant genome. GigaScience. 2020;9:1–11.
Article
CAS
Google Scholar
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–6.
Article
CAS
PubMed
Google Scholar
Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2020;17:155–8.
Article
CAS
PubMed
Google Scholar
Vollger MR, Logsdon GA, Audano PA, Sulovari A, Porubsky D, Peluso P, et al. Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads. Ann Hum Genet. 2020;84:125–40.
Article
CAS
PubMed
Google Scholar
Banchi E, Ametrano CG, Greco S, Stanković D, Muggia L, Pallavicini A. PLANiTS: a curated sequence reference dataset for plant ITS DNA metabarcoding. Database. 2020;2020:baz155.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
Rhie A, McCarthy SA, Fedrigo O, et al. Towards complete and error-free genome assemblies of all vertebrate species. Natur. 2021;592:737–46.
Logsdon GA, Vollger MR, Hsieh P, Mao Y, Liskovykh MA, Koren S, et al. The structure, function and evolution of a complete human chromosome 8. Nature. 021;593:101–7.
Mishra DC, Lal SB, Sharma A, Kumar S, Budhlakoti N, Rai A. Strategies and tools for sequencing and assembly of plant genomes. In: Kumar Chakrabarti S, Xie C, Kumar Tiwari J, editors. Potato genome. Cham: Springer International Publishing; 2017. p. 81–93.
Chapter
Google Scholar
Zhou Y, Chebotarov D, Kudrna D, Llaca V, Lee S, Rajasekar S, et al. A platinum standard pan-genome resource that represents the population structure of Asian rice. Sci Data. 2020;7:113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eucalyptus camaldulensis (Murray red gum) genome assembly ASM1418270v1: NCBI. Available from: https://www.ncbi.nlm.nih.gov/assembly/GCA_014182705.1
Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EKS, et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet. 2016;48:438–46.
Article
CAS
PubMed
Google Scholar
Kyriakidou M, Tai HH, Anglin NL, Ellis D, Strömvik MV. Current strategies of polyploid plant genome sequence assembly. Front Plant Sci. 2018;9:1–15.
Article
Google Scholar
Darwin tree Of life. 2020. Available from: https://www.darwintreeoflife.org/
Eucalyptus genome project- BioProject ID 509734: NCBI. Available from: https://www.ncbi.nlm.nih.gov/bioproject/509734
Pacific Biosciences. Technical note: preparing DNA for PacBio HiFi- sequencing extraction and quality control. Prep. DNA PacBio HiFi Seq. — Extr. Qual. Control. 2020. Available from: https://www.pacb.com/wp-content/uploads/Technical-Note-Preparing-DNA-for-PacBio-HiFi-Sequencing-Extraction-and-Quality-Control.pd
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017. Available from: https://www.R-project.org/
Google Scholar
Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kokot M, Długosz M, Deorowicz S. KMC 3: counting and manipulating k-mer statistics. Berger B, editor. Bioinformatics. 2017;33:2759–61.
Article
CAS
PubMed
Google Scholar
Li H, Feng X, Chu C. The design and construction of reference pangenome graphs with minigraph. Genome Biol. 2020;21:265.
Article
PubMed
PubMed Central
Google Scholar
Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLOS ONE. 2016;11:e0163962.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics. 2018;34:i142–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. In: Kollmar M, editor. Gene Predict. New York: Springer New York; 2019. p. 227–45.
Chapter
Google Scholar
Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020;36:2896–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Driguez P, Bougouffa S, Carty K, Putra A, Jabbari K, Reddy MP, et al. LeafGo - Eucalyptus and Peanut genome sequencing - BioProject ID 674723: NCBI; 2021. Available from: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA674723
Driguez P, Bougouffa S, Carty K, Putra A, Jabbari K, Reddy MP, et al. LeafGo - Eucalyptus and Peanut genome sequencing - BioProject ID 739547: NCBI; 2021. Available from: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA739547
Driguez P, Bougouffa S, Carty K, Putra A, Jabbari K, Reddy MP, et al. LeafGo - Eucalyptus and Peanut genome sequencing - BioProject ID 737587: NCBI; 2021. Available from: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA737587.