Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, et al. Ten things you should know about transposable elements. Genome Biol. 2018;19(1):199. https://doi.org/10.1186/s13059-018-1577-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai L, Zimmerly S. ORF-less and reverse-transcriptase-encoding group II introns in archaebacteria, with a pattern of homing into related group II intron ORFs. RNA. 2003;9(1):14–9. https://doi.org/10.1261/rna.2126203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ozata DM, Gainetdinov I, Zoch A, O'Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet. 2019;20(2):89–108. https://doi.org/10.1038/s41576-018-0073-3.
Article
CAS
PubMed
Google Scholar
Lisch D. Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol. 2009;60(1):43–66. https://doi.org/10.1146/annurev.arplant.59.032607.092744.
Article
CAS
PubMed
Google Scholar
Matzke MA, Mosher RA. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet. 2014;15(6):394–408. https://doi.org/10.1038/nrg3683.
Article
CAS
PubMed
Google Scholar
Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8(4):272–85. https://doi.org/10.1038/nrg2072.
Article
CAS
PubMed
Google Scholar
Capy P, Gasperi G, Biemont C, Bazin C. Stress and transposable elements: co-evolution or useful parasites? Heredity (Edinb). 2000;85(2):101–6. https://doi.org/10.1046/j.1365-2540.2000.00751.x.
Article
CAS
Google Scholar
Horvath V, Merenciano M, Gonzalez J. Revisiting the relationship between transposable elements and the eukaryotic stress response. Trends Genet. 2017;33(11):832–41. https://doi.org/10.1016/j.tig.2017.08.007.
Article
CAS
PubMed
Google Scholar
Lanciano S, Mirouze M. Transposable elements: all mobile, all different, some stress responsive, some adaptive? Curr Opin Genet Dev. 2018;49:106–14. https://doi.org/10.1016/j.gde.2018.04.002.
Article
CAS
PubMed
Google Scholar
Schrader L, Schmitz J. The impact of transposable elements in adaptive evolution. Mol Ecol. 2019;28(6):1537–49. https://doi.org/10.1111/mec.14794.
Article
PubMed
Google Scholar
Seidl MF, Thomma B. Transposable elements direct the coevolution between plants and microbes. Trends Genet. 2017;33(11):842–51. https://doi.org/10.1016/j.tig.2017.07.003.
Article
CAS
PubMed
Google Scholar
Dubin MJ, Mittelsten Scheid O, Becker C. Transposons: a blessing curse. Curr Opin Plant Biol. 2018;42:23–9. https://doi.org/10.1016/j.pbi.2018.01.003.
Article
CAS
PubMed
Google Scholar
Fouche S, Badet T, Oggenfuss U, Plissonneau C, Francisco CS, Croll D. Stress-driven transposable element de-repression dynamics and virulence evolution in a fungal pathogen. Mol Biol Evol. 2020;37(1):221–39. https://doi.org/10.1093/molbev/msz216.
Article
CAS
PubMed
Google Scholar
Moller M, Stukenbrock EH. Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol. 2017;15(12):771. https://doi.org/10.1038/nrmicro.2017.143.
Article
CAS
PubMed
Google Scholar
van Kan JA. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci. 2006;11(5):247–53. https://doi.org/10.1016/j.tplants.2006.03.005.
Article
CAS
PubMed
Google Scholar
Veloso J, van Kan JAL. Many shades of grey in Botrytis-host plant interactions. Trends Plant Sci. 2018;23(7):613–22. https://doi.org/10.1016/j.tplants.2018.03.016.
Article
CAS
PubMed
Google Scholar
Dunker F, Trutzenberg A, Rothenpieler JS, Kuhn S, Prols R, Schreiber T, et al. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. Elife. 2020;9:e56096. https://doi.org/10.7554/eLife.56096.
Article
PubMed
PubMed Central
Google Scholar
Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants. 2016;2(10):16151. https://doi.org/10.1038/nplants.2016.151.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahid S, Kim G, Johnson NR, Wafula E, Wang F, Coruh C, et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature. 2018;553(7686):82–5. https://doi.org/10.1038/nature25027.
Article
CAS
PubMed
Google Scholar
Ren B, Wang X, Duan J, Ma J. Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science. 2019;365(6456):919–22. https://doi.org/10.1126/science.aav8907.
Article
CAS
PubMed
Google Scholar
Weiberg A, Bellinger M, Jin H. Conversations between kingdoms: small RNAs. Curr Opin Biotechnol. 2015;32:207–15. https://doi.org/10.1016/j.copbio.2014.12.025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiberg A, Wang M, Bellinger M, Jin H. Small RNAs: a new paradigm in plant-microbe interactions. Annu Rev Phytopathol. 2014;52(1):495–516. https://doi.org/10.1146/annurev-phyto-102313-045933.
Article
CAS
PubMed
Google Scholar
Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science. 2013;342(6154):118–23. https://doi.org/10.1126/science.1239705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porquier A, Morgant G, Moraga J, Dalmais B, Luyten I, Simon A, et al. The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)2Cys6 transcription factor BcBot6. Fungal Genet Biol. 2016;96:33–46. https://doi.org/10.1016/j.fgb.2016.10.003.
Article
CAS
PubMed
Google Scholar
Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, et al. Sorting of small RNAs into Arabidopsis Argonaute complexes is directed by the 5' terminal nucleotide. Cell. 2008;133(1):116–27. https://doi.org/10.1016/j.cell.2008.02.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Kan JA, Stassen JH, Mosbach A, Van Der Lee TA, Faino L, Farmer AD, et al. A gapless genome sequence of the fungus Botrytis cinerea. Mol Plant Pathol. 2017;18(1):75–89. https://doi.org/10.1111/mpp.12384.
Article
CAS
PubMed
Google Scholar
Flutre T, Duprat E, Feuillet C, Quesneville H. Considering transposable element diversification in de novo annotation approaches. PLoS One. 2011;6(1):e16526. https://doi.org/10.1371/journal.pone.0016526.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hane JK, Williams AH, Taranto AP, Solomon PS, Oliver RP. Repeat-Induced Point Mutation: A Fungal-Specific, Endogenous Mutagenesis Process. Genetic Transformation Systems in Fungi. 2015;2:55–68.
Article
Google Scholar
Amselem J, Lebrun MH, Quesneville H. Whole genome comparative analysis of transposable elements provides new insight into mechanisms of their inactivation in fungal genomes. BMC Genomics. 2015;16(1):141. https://doi.org/10.1186/s12864-015-1347-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hane JK, Oliver RP. RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic sequences. BMC Bioinformatics. 2008;9(1):478. https://doi.org/10.1186/1471-2105-9-478.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gladyshev E. Repeat-induced point mutation and other genome defense mechanisms in fungi. Microbiol Spectr. 2017;5. https://journals.asm.org/doi/full/10.1128/microbiolspec.FUNK-0042-2017.
Murata T, Kadotani N, Yamaguchi M, Tosa Y, Mayama S, Nakayashiki H. siRNA-dependent and -independent post-transcriptional cosuppression of the LTR-retrotransposon MAGGY in the phytopathogenic fungus Magnaporthe oryzae. Nucleic Acids Res. 2007;35(18):5987–94. https://doi.org/10.1093/nar/gkm646.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schumacher J. Tools for Botrytis cinerea: New expression vectors make the gray mold fungus more accessible to cell biology approaches. Fungal Genet Biol. 2012;49(6):483–97. https://doi.org/10.1016/j.fgb.2012.03.005.
Article
CAS
PubMed
Google Scholar
Toufighi K, Brady SM, Austin R, Ly E, Provart NJ. The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J. 2005;43(1):153–63. https://doi.org/10.1111/j.1365-313X.2005.02437.x.
Article
CAS
PubMed
Google Scholar
Llorente F, Muskett P, Sanchez-Vallet A, Lopez G, Ramos B, Sanchez-Rodriguez C, et al. Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Mol Plant. 2008;1(3):496–509. https://doi.org/10.1093/mp/ssn025.
Article
CAS
PubMed
Google Scholar
Yuan HM, Liu WC, Lu YT. CATALASE2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses. Cell Host Microbe. 2017;21(2):143–55. https://doi.org/10.1016/j.chom.2017.01.007.
Article
CAS
PubMed
Google Scholar
Shindo T, Misas-Villamil JC, Horger AC, Song J, van der Hoorn RA. A role in immunity for Arabidopsis cysteine protease RD21, the ortholog of the tomato immune protease C14. PLoS One. 2012;7(1):e29317. https://doi.org/10.1371/journal.pone.0029317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Asano T, Masuda D, Yasuda M, Nakashita H, Kudo T, Kimura M, et al. AtNFXL1, an Arabidopsis homologue of the human transcription factor NF-X1, functions as a negative regulator of the trichothecene phytotoxin-induced defense response. Plant Journal. 2008;53:450–64.
Article
CAS
Google Scholar
Jiang YJ, Yu DQ. The WRKY57 transcription factor affects the expression of jasmonate ZIM-domain genes transcriptionally to compromise Botrytis cinerea resistance. Plant Physiology. 2016;171(4):2771–82. https://doi.org/10.1104/pp.16.00747.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dai X, Zhuang Z, Zhao PX. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018;46(W1):W49–54. https://doi.org/10.1093/nar/gky316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez F, Blancard D, Lecomte P, Levis C, Dubos B, Fermaud M. Phenotypic differences between vacuma and transposa subpopulations of Botrytis cinerea. Europ J Plant Pathol. 2003;109(5):479–88. https://doi.org/10.1023/A:1024222206991.
Article
Google Scholar
Martinez F, Dubos B, Fermaud M. The role of saprotrophy and virulence in the population dynamics of Botrytis cinerea in vineyards. Phytopathol. 2005;95(6):692–700. https://doi.org/10.1094/PHYTO-95-0692.
Article
Google Scholar
Wang M, Weiberg A, Dellota E Jr, Yamane D, Jin H. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. RNA Biol. 2017;14(4):421–8. https://doi.org/10.1080/15476286.2017.1291112.
Article
PubMed
PubMed Central
Google Scholar
Mari-Ordonez A, Marchais A, Etcheverry M, Martin A, Colot V, Voinnet O. Reconstructing de novo silencing of an active plant retrotransposon. Nat Genet. 2013;45(9):1029–39. https://doi.org/10.1038/ng.2703.
Article
CAS
PubMed
Google Scholar
Chow FW, Koutsovoulos G, Ovando-Vazquez C, Neophytou K, Bermudez-Barrientos JR, Laetsch DR, et al. Secretion of an Argonaute protein by a parasitic nematode and the evolution of its siRNA guides. Nucleic Acids Res. 2019;47(7):3594–606. https://doi.org/10.1093/nar/gkz142.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T, et al. Erratum: Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun. 2015;6(1):8772. https://doi.org/10.1038/ncomms9772.
Article
CAS
PubMed
Google Scholar
Fernández-Bautista N, Domínguez-Núñez JA, Moreno MC, Berrocal-Lobo M. Plant tissue trypan blue staining during phytopathogen infection. Bio-protoccol. 2016. https://doi.org/10.21769/BioProtoc.2078.
Chen DH, Ronald PC. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep. 1999;17(1):53–7. https://doi.org/10.1023/A:1007585532036.
Article
CAS
Google Scholar
Bemm F, Becker D, Larisch C, Kreuzer I, Escalante-Perez M, Schulze WX, et al. Venus flytrap carnivorous lifestyle builds on herbivore defense strategies. Genome Res. 2016;26(6):812–25. https://doi.org/10.1101/gr.202200.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods. 2007;3(1):12. https://doi.org/10.1186/1746-4811-3-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Binder A, Lambert J, Morbitzer R, Popp C, Ott T, Lahaye T, et al. A modular plasmid assembly kit for multigene expression, gene silencing and silencing rescue in plants. PLoS One. 2014;9(2):e88218. https://doi.org/10.1371/journal.pone.0088218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muller N, Leroch M, Schumacher J, Zimmer D, Konnel A, Klug K, et al. Investigations on VELVET regulatory mutants confirm the role of host tissue acidification and secretion of proteins in the pathogenesis of Botrytis cinerea. New Phytol. 2018;219(3):1062–74. https://doi.org/10.1111/nph.15221.
Article
CAS
PubMed
Google Scholar
Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 2005;15(10):1451–5. https://doi.org/10.1101/gr.4086505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonnet E, He Y, Billiau K, Van de Peer Y. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics. 2010;26(12):1566–8. https://doi.org/10.1093/bioinformatics/btq233.
Article
CAS
PubMed
Google Scholar
Bagnoli JW, Ziegenhain C, Janjic A, Wange LE, Vieth B, Parekh S, et al. Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq. Nature Commun. 2018;9(1):2937. https://doi.org/10.1038/s41467-018-05347-6.
Article
CAS
Google Scholar
Renaud G, Stenzel U, Maricic T, Wiebe V, Kelso J. deML: robust demultiplexing of Illumina sequences using a likelihood-based approach. Bioinformatics. 2015;31:770-2. 5., https://doi.org/10.1093/bioinformatics/btu719.
Parekh S, Ziegenhain C, Vieth B, Enard W, Hellmann I. zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs. Gigascience. 2018;7:giy059.
Article
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
PubMed
Google Scholar
Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics. 2018;19(1):534. https://doi.org/10.1186/s12859-018-2486-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2020;17(2):155–8. https://doi.org/10.1038/s41592-019-0669-3.
Article
CAS
PubMed
Google Scholar
Vaser R, Sovic I, Nagarajan N, Sikic M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27(5):737–46. https://doi.org/10.1101/gr.214270.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. https://doi.org/10.1371/journal.pone.0112963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45. https://doi.org/10.1101/gr.092759.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30(19):2811–2. https://doi.org/10.1093/bioinformatics/btu393.
Article
CAS
PubMed
Google Scholar
Margolin BS, Garrett-Engele PW, Stevens JN, Fritz DY, Garrett-Engele C, Metzenberg RL, et al. A methylated Neurospora 5S rRNA pseudogene contains a transposable element inactivated by repeat-induced point mutation. Genetics. 1998;149(4):1787–97. https://doi.org/10.1093/genetics/149.4.1787.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020;48(D1):D265–8. https://doi.org/10.1093/nar/gkz991.
Article
CAS
PubMed
Google Scholar
Zhao M, Zhou JY, Li ZD, Song WW, Gong T, Tan H. Boty-like retrotransposons in the filamentous fungus Botrytis cinerea contain the additional antisense gene brtn. Virology. 2011;417(2):248–52. https://doi.org/10.1016/j.virol.2011.06.020.
Article
CAS
PubMed
Google Scholar
Porquier A, Tisserant C, Salinas F, Glassl C, Wange L, Enard W, Hauser A, Hahn M, Weiberg A. Retrotransposons as pathogenicity factors of the plant pathogenic fungus Botrytis cinerea. BioProject PRJNA730711. NCBI. 2021.www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA730711.