Katherine RA. An introduction to microbiome analysis for human biology applications. Am J Hum Biol. 2017; 29(1):e22931.
Article
Google Scholar
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest.Nature. 2006; 444(7122):1027.
Article
PubMed
Google Scholar
Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host–archaeal–bacterial mutualism. Proc Natl Acad Sci. 2006; 103(26):10011–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stokholm J, Blaser MJ, Thorsen J, Rasmussen MA, Waage J, Vinding RK, Schoos A-MM, Kunøe A, Fink NR, Chawes BL, et al.Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun. 2018; 9(1):1–10.
Article
CAS
Google Scholar
Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PloS ONE. 2012; 7(10):e47305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK. Understanding the role of gut microbiome–host metabolic signal disruption in health and disease. Trends Microbiol. 2011; 19(7):349–59.
Article
CAS
PubMed
Google Scholar
Xinyan Z, Himel M, Nengjun Y. Zero-inflated negative binomial regression for differential abundance testing in microbiome studies. J Bioinforma Genomics. 2016; 2(2). https://doi.org/10.18454/jbg.2016.2.2.1. http://journal-biogen.org/article/view/12.
Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect. 2018; 24(4):335–41.
Article
CAS
PubMed
Google Scholar
Luz Calle M. Statistical analysis of metagenomics data. Genomics Inf. 2019; 17(1):e6-.
Jovel J, Patterson J, Wang W, Hotte N, O’Keefe S, Mitchel T, Perry T, Kao D, Mason AL, Madsen KL, et al.Characterization of the gut microbiome using 16s or shotgun metagenomics. Front Microbiol. 2016; 7:459.
Article
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016; 13(7):581–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017; 11(12):2639–43.
Article
PubMed
PubMed Central
Google Scholar
Li H. Microbiome, Metagenomics, and High-Dimensional Compositional Data Analysis. Annu Rev Stat Appl. 2015; 2(1):73–94. https://doi.org/10.1146/annurev-statistics-010814-020351.
Article
Google Scholar
Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, Amiot A, Böhm J, Brunetti F, Habermann N, et al.Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol. 2014; 10(11).
Feng Q, Liang S, Jia H, Stadlmayr A, Tang L, Lan Z, Zhang D, Xia H, Xu X, Jie Z, et al.Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat Commun. 2015; 6:6528.
Article
CAS
PubMed
Google Scholar
Yu J, Feng Q, Wong SH, Zhang D, Liang Q, Qin Y, Tang L, Zhao H, Stenvang J, Li Y, et al.Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017; 66(1):70–8. https://pubmed.ncbi.nlm.nih.gov/26408641/.
Article
CAS
PubMed
Google Scholar
Vogtmann E, Hua X, Zeller G, Sunagawa S, Voigt AY, Hercog R, Goedert JJ, Shi J, Bork P, Sinha R. Colorectal cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing. PloS ONE. 2016; 11(5).
Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F. Gut metagenome in european women with normal, impaired and diabetic glucose control. Nature. 2013; 498(7452):99–103.
Article
CAS
PubMed
Google Scholar
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al.A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012; 490(7418):55–600.
Article
CAS
PubMed
Google Scholar
Calgaro M, Romualdi C, Waldron L, Risso D, Vitulo N. Assessment of single cell rna-seq statistical methods on microbiome data. Genome Biology. 2020; 21(1):191.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brill B, Amir A, Heller R. Testing for differential abundance in compositional counts data, with application to microbiome studies; 2020. arXiv:1904.08937v5.
Silverman JD, Roche K, Mukherjee S, David LA. Naught all zeros in sequence count data are the same. BioRxiv. 2020:477794.
Pereira-Marques J, Anne H, Ferreira RM, Weber M, Pinto-Ribeiro I, van Doorn L-J, Knetsch CW, Figueiredo C. Impact of host DNA and sequencing depth on the taxonomic resolution of whole metagenome sequencing for microbiome analysis. Front Microbiol. 2019; 10:1277.
Article
PubMed
PubMed Central
Google Scholar
Microbiome Human. Project consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486:207–14.
Article
CAS
Google Scholar
Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, Brady A, Creasy HH, McCracken C, Giglio MG, et al.Strains, functions and dynamics in the expanded human microbiome project. Nature. 2017; 550(7674):61–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia F, Chen J, Fung WK, Li H. A logistic normal multinomial regression model for microbiome compositional data analysis. Biometrics. 2013; 69(4):1053–63.
Article
PubMed
Google Scholar
Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015; 26(1):27663.
PubMed
Google Scholar
Tsilimigras MCB, Fodor AA. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol. 2016; 26(5):330–35.
Article
PubMed
Google Scholar
Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C, Zaneveld JR, Vázquez-Baeza Y, Birmingham A, et al.Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017; 5(1):27.
Article
PubMed
PubMed Central
Google Scholar
Kaul A, Mandal S, Davidov O, Peddada SD. Analysis of microbiome data in the presence of excess zeros. Front Microbiol. 2017; 8:2114.
Article
PubMed
PubMed Central
Google Scholar
Lizhen X, Paterson AD, Turpin W, Wei X. Assessment and selection of competing models for zero-inflated microbiome data. PloS ONE. 2015; 10(7).
Chen J, King E, Deek R, Wei Z, Yue Y, Grill D, Ballman K. An omnibus test for differential distribution analysis of microbiome sequencing data. Bioinformatics. 2018a; 34(4):643–51.
McMurdie PJ, Holmes S. phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data. PloS ONE. 2013; 8(4):e61217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Paulson JN, Colin Stine O. Héctor Corrada Bravo, and Mihai Pop. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013; 10(12):1200–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng X, Li G, Liu Z. Zero-inflated beta regression for differential abundance analysis with metagenomics data. J Comput Biol. 2016; 23(2):102–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Randolph TW, Zhao S, Copeland W, Hullar M, Shojaie A. Kernel-penalized regression for analysis of microbiome data. Ann Appl Stat. 2018; 12(1):540.
Article
PubMed
PubMed Central
Google Scholar
Li Z, Lee K, Karagas MR, Madan JC, Hoen AG, O’malley AJ, Li H. Conditional regression based on a multivariate zero-inflated logistic-normal model for microbiome relative abundance data. Stat Biosci. 2018; 10(3):587–608.
Article
PubMed
PubMed Central
Google Scholar
Hawinkel Stijn, Mattiello Federico, Bijnens Luc, Thas Olivier. A broken promise: microbiome differential abundance methods do not control the false discovery rate. Brief Bioinforma. 2019; 20(1):210–21.
Article
Google Scholar
Horner-Devine MC, Silver JM, Leibold MA, Bohannan BJM, Colwell RK, Fuhrman JA, Green JL, Kuske CR, Martiny JBH, Muyzer G, et al.A comparison of taxon co-occurrence patterns for macro-and microorganisms. Ecology. 2007; 88(6):1345–53.
Article
PubMed
Google Scholar
Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012; 6(2):343–51.
Article
PubMed
CAS
Google Scholar
Gokul JK, Hodson AJ, Saetnan ER, Irvine-Fynn TDL, Westall PJ, Detheridge AP, Takeuchi N, Bussell J, Mur LAJ, Edwards A. Taxon interactions control the distributions of cryoconite bacteria colonizing a high arctic ice cap. Mol Ecol. 2016; 25(15):3752–67.
Article
PubMed
Google Scholar
Tapio I, Fischer D, Blasco L, Tapio M, Wallace RJ, Bayat AR, Ventto L, Kahala M, Negussie E, Shingfield KJ, et al.Taxon abundance, diversity, co-occurrence and network analysis of the ruminal microbiota in response to dietary changes in dairy cows. PloS ONE. 2017; 12(7).
Bennett J, Lanning S, et al.The Netflix prize. In: Proceedings of KDD cup and workshop, vol 2007. Citeseer: 2007. p. 35.
Dass SC, Nair VN. Edge detection, spatial smoothing, and image reconstruction with partially observed multivariate data. J Am Stat Assoc. 2003; 98(461):77–89.
Article
Google Scholar
Faubel F, McDonough J, Dietrich K. Bounded conditional mean imputation with Gaussian mixture models: a reconstruction approach to partly occluded features. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE: 2009. p. 3869–72.
Rulloni V, Bustos O, Flesia AG. Large gap imputation in remote sensed imagery of the environment. Comput Stat Data Anal. 2012; 56(8):2388–2403.
Article
Google Scholar
Ernst Jason, Kellis Manolis. Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues. Nat Biotechnol. 2015; 33(4):364.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marchini Jonathan, Howie Bryan. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010; 11(7):499–511.
Article
CAS
PubMed
Google Scholar
Li WV, Li JJ. An accurate and robust imputation method scimpute for single-cell RNA-seq data. Nat Commun. 2018; 9(1):1–9.
Article
CAS
Google Scholar
Van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, Burdziak C, Moon KR, Chaffer CL, Pattabiraman D, et al.Recovering gene interactions from single-cell data using data diffusion. Cell. 2018; 174(3):716–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mo H, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, Murray JI, Raj A, Li M, Zhang NR. SAVER: gene expression recovery for single-cell RNA sequencing. Nat Methods. 2018; 15(7):539–42.
Article
CAS
Google Scholar
Linderman GC, Zhao J, Kluger Y. Zero-preserving imputation of scRNA-seq data using low-rank approximation. bioRxiv. 2018:397588.
Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun. 2019; 10(1):390.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R, Zengler K. A novel sparse compositional technique reveals microbial perturbations. MSystems. 2019; 4(1).
Cai Yun, Hong Gu, Kenney Toby. Learning microbial community structures with supervised and unsupervised non-negative matrix factorization. Microbiome. 2017; 5(1):110.
Article
PubMed
PubMed Central
Google Scholar
Garamszegi LZ. Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice: Springer; 2014.
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012; 3(2):217–23.
Article
Google Scholar
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010; 26(11):1463–64.
Article
CAS
PubMed
Google Scholar
Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, et al.The caper package: comparative analysis of phylogenetics and evolution in R. R package version. 2013; 5(2):1–36.
Google Scholar
Gloor GB, Reid G. Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Can J Microbiol. 2016; 62(8):692–703.
Article
CAS
PubMed
Google Scholar
Chen J, Bushman FD, Lewis JD, Wu GD, Li H. Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis. Biostatistics. 2013; 14(2):244–58.
Article
PubMed
Google Scholar
Wang T, Zhao H. Constructing predictive microbial signatures at multiple taxonomic levels. J Am Stat Assoc. 2017; 112(519):1022–31.
Article
CAS
Google Scholar
Xiao J, Cao H, Chen J. False discovery rate control incorporating phylogenetic tree increases detection power in microbiome-wide multiple testing. Bioinformatics. 2017; 33(18):2873–81.
Article
CAS
PubMed
Google Scholar
Washburne AD, Morton JT, Sanders J, McDonald D, Zhu Q, Oliverio AM, Knight R. Methods for phylogenetic analysis of microbiome data. Nat Microbiol. 2018; 3(6):652–61.
Article
CAS
PubMed
Google Scholar
Anderson TM, Lachance M-A, Starmer WT. The relationship of phylogeny to community structure: the cactus yeast community. Am Nat. 2004; 164(6):709–21.
Article
PubMed
Google Scholar
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Annu Rev Ecol Syst. 2002; 33(1):475–505.
Article
Google Scholar
Weiher E, Keddy PA. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos. 1995:159–64.
Arisdakessian C, Poirion O, Yunits B, Zhu X, Garmire LX. Deepimpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data. Genome Biol. 2019; 20(1):1–14.
Article
CAS
Google Scholar
Hastie T, Mazumder R. softimpute: Matrix completion via iterative soft-thresholded svd. R package version. 2015; p1:1.
Google Scholar
Allen-Vercoe E, Jobin C. Fusobacterium and Enterobacteriaceae: important players for CRCImmunol Lett. 2014; 162(2):54–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004; 25(1):4–7.
Article
CAS
PubMed
Google Scholar
Dulal S, Keku TO. Gut microbiome and colorectal adenomas. Cancer J (Sudbury, Mass.) 2014; 20(3):225.
Article
CAS
Google Scholar
Friedman J, Hastie T, Tibshirani R. glmnet: Lasso and elastic-net regularized generalized linear models. R package version. 2009; 1(4).
Gong W, Kwak I-Y, Pota P, Koyano-Nakagawa N, Garry DJ. Drimpute: imputing dropout events in single cell RNA sequencing data. BMC Bioinformatics. 2018; 19(1):220.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jackman S. pscl: classes and methods for R. Developed in the Political Science Computational Laboratory, Stanford University. Department of Political Science, Stanford University, Stanford, CA. r package version 1.03.5. 2010. http://www.pscl.stanford.edu/. Accessed 15 Dec 2020.
Kalisch M, Bühlman P. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J Mach Learn Res. 2007; 8(3):613–36.
Google Scholar
Krijthe JH. Rtsne: T-distributed stochastic neighbor embedding using Barnes-Hut implementation. R package version 0.13. 2015. https://github.com/jkrijthe/Rtsne. Accessed 15 Dec 2020.
Larsen N, Vogensen FK, Van Den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PloS ONE. 2010; 5(2).
Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci. 2005; 102(31):11070–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li WV, Li JJ. A statistical simulator scDesign for rational scRNA-seq experimental design. Bioinformatics. 2019; 35(14):i41—i50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG, Louk JA, Rose DJ, Kyureghian G, Peterson DA, et al.Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013; 7(2):269–80.
Article
PubMed
CAS
Google Scholar
Nakatsu G, Li X, Zhou H, Sheng J, Wong SH, Wu WKK, Ng SC, Tsoi H, Dong Y, Zhang N, et al.Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat Commun. 2015; 6(1):1–9.
Article
CAS
Google Scholar
Nguyen NT, Nguyen X-MT, Lane J, Wang P. Relationship between obesity and diabetes in a US adult population: findings from the National Health and Nutrition Examination Survey, 1999–2006. Obes Surg. 2011; 21(3):351–55.
Article
PubMed
Google Scholar
van Nimwegen KJM, van Soest RA, Veltman JA, Nelen MR, van der Wilt GJ, Vissers LELM, Grutters JPC. Is the 1000 genome as near as we think? A cost analysis of next-generation sequencing. Clin Chem. 2016; 62(11):1458–64.
Article
CAS
PubMed
Google Scholar
Noble D, Mathur R, Dent T, Meads C, Greenhalgh T. Risk models and scores for type 2 diabetes: systematic review. Bmj. 2011; d7163:343.
Google Scholar
Pasolli E, Schiffer L, Manghi P, Renson A, Obenchain V, Truong DT, Beghini F, Malik F, Ramos M, Dowd JB, et al.Accessible, curated metagenomic data through ExperimentHub. Nat Methods. 2017; 14(11):1023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Remely M, Dworzak S, Hippe B, Zwielehner J, Aumüller E, Brath H, Haslberger A. Abundance and diversity of microbiota in type 2 diabetes and obesity. J Diabete Metab. 2013; 4(253):2.
Google Scholar
Ren B, Schwager E, Tickle TL, Huttenhower C. sparseDOSSA: Sparse Data Observations for Simulating Synthetic Abundance. 2016. R package version 0.99.6.
Sanapareddy N, Legge RM, Jovov B, McCoy A, Burcal L, Araujo-Perez F, Randall TA, Galanko J, Benson A, Sandler RS, et al.Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J. 2012; 6(10):1858–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977; 31(1):107–33.
Article
CAS
PubMed
Google Scholar
Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe. 2012; 12(3):277–88.
Article
CAS
PubMed
Google Scholar
Shen XJ, Rawls JF, Randall TA, Burcall L, Mpande C, Jenkins N, Jovov B, Abdo Z, Sandler RS, Keku TO. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes. 2010; 1(3):138–47.
Article
PubMed
PubMed Central
Google Scholar
Sobhani I, Tap Julien, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Van Nhieu JT, Furet JP. Microbial dysbiosis in colorectal cancer (CRC) patients. PloS ONE. 2011; 1(6):1–7.
Google Scholar
Waese J, Provart NJ, Guttman DS. Topo-phylogeny: visualizing evolutionary relationships on a topographic landscape. PloS ONE. 2017; 1(5):e0175895.
Article
CAS
Google Scholar
Wang T, Cai G, Qiu Y, Na F, Zhang M, Pang X, Jia W, Cai S, Zhao L. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012; 6(2):320–9.
Article
CAS
PubMed
Google Scholar
Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PloS ONE. 2013; 8(8):1–10.
Article
CAS
Google Scholar
Na Wu, Yang X, Zhang R, Li J, Xiao X, Hu Y, Chen Y, Yang F, Lu N, Wang Z, et al.Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 2013; 66(2):462–70.
Article
CAS
Google Scholar
Sicheng Wu, Sun C, Li Y, Wang T, Jia L, Lai S, Yang Y, Luo P, Dai D, Yang Y-Q, et al.GMrepo: a database of curated and consistently annotated human gut metagenomes. Nucleic Acids Res. 2020; 48(D1):D545—D553.
Google Scholar
Xiao J, Li C, Johnson S, Yue Y, Zhang X, Chen J. Predictive modeling of microbiome data using a phylogeny-regularized generalized linear mixed model. Front Microbiol. 2018; 9:1391.
Article
PubMed
PubMed Central
Google Scholar
Yang Y, Cai Q, Zheng W, Steinwandel M, Blot WJ, Shu X-O, Long J. Oral microbiome and obesity in a large study of low-income and African-American populations. J Oral Microbiol. 2019; 11(1):1650597.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J, King E, Deek R, Wei Z, Yue Y, Grill D, Ballman K. An omnibus test for differential distribution analysis of microbiome sequencing data. Bioinformatics. 2018b; 34(4):643–51.
Yanyun Gu, Wang X, Li J, Zhang Y, Zhong H, Liu R, Zhang D, Feng Q, Xie X, Hong J, et al.Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun. 2017; 8(1):1–12.
Article
CAS
Google Scholar
Horie M, Miura T, Hirakata S, Hosoyama A, Sugino S, Umeno A, Murotomi K, Yoshida Y, Koike T. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice. Exp Anim. 2017; 66:17–0021.
Article
Google Scholar
Moore WE, Moore LH. Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol. 1995; 61(9):3202–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lucas C, Barnich N, Nguyen HTT. Microbiota, inflammation and colorectal cancer. Int J Mol Sci. 2017; 18(6):1310.
Article
PubMed Central
CAS
Google Scholar
Peterson CT, Sharma V, Elmén L, Peterson SN. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol. 2015; 179(3):363–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaoguang Wu, Rhee K-J, Albesiano E, Rabizadeh S, Wu X, Yen H-R, Huso DL, Brancati FL, Wick E, McAllister F, et al.A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Mater. 2009; 15(9):1016–22.
Google Scholar
Wang J, Jia H. Metagenome-wide association studies: fine-mining the microbiome. Nat Rev Microbiol. 2016; 14(8):508–22.
Article
CAS
PubMed
Google Scholar
He G, Wen J-J, Jie-Lun H, Nie Q-X, Chen H-H, Xiong T, Nie S-P, Xie M-Y. Polysaccharide from fermented Momordica charantia L. with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats. Carbohydr Polym. 2018; 201:624–33.
Article
CAS
Google Scholar
Kosumi K, Hamada T, Koh H, Borowsky J, Bullman S, Twombly TS, Nevo D, Masugi Y, Liu L, da Silva A, et al.The amount of Bifidobacterium genus in colorectal carcinoma tissue in relation to tumor characteristics and clinical outcome. Am J Pathol. 2018; 188(12):2839–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parisa A, Roya G, Mahdi R, Shabnam R, Maryam E, Malihe T. Anti-cancer effects of Bifidobacterium species in colon cancer cells and a mouse model of carcinogenesis. PloS ONE. 2020; 15(5):e0232930.
Article
CAS
PubMed Central
Google Scholar
Bahmani S, Azarpira N, Moazamian E. Anti-colon cancer activity of Bifidobacterium metabolites on colon cancer cell line SW742. Turk J Gastroenterol. 2019; 30(9):835.
Article
PubMed
PubMed Central
Google Scholar
Wang Q, Wang K, Wu W, Lv L, Bian X, Yang L, Wang Q, Li Y, Ye J, Fang D, et al.Administration of Bifidobacterium bifidum CGMCC 15068 modulates gut microbiota and metabolome in azoxymethane (AOM)/dextran sulphate sodium (DSS)-induced colitis-associated colon cancer (CAC) in mice. Appl Microbiol Biotechnol. 2020; 104(13):5915–28.
Article
CAS
PubMed
Google Scholar
Gueimonde M, Ouwehand A, Huhtinen H, Salminen E, Salminen S. Qualitative and quantitative analyses of the bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel disease. World J Gastroenterol WJG. 2007; 13(29):3985.
Article
PubMed
Google Scholar
Fahmy CA, Gamal-Eldeen AM, El-Hussieny EA, Raafat BM, Mehanna NS, Talaat RM, Shaaban MT. Bifidobacterium longum suppresses murine colorectal cancer through the modulation of oncomirs and tumor suppressor mirnas. Nutr Cancer. 2019; 71(4):688–700.
Article
CAS
PubMed
Google Scholar
Chen EZ, Li H. A two-part mixed-effects model for analyzing longitudinal microbiome compositional data. Bioinformatics. 2016; 32(17):2611–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Layeghifard M, Hwang DM, Guttman DS. Disentangling interactions in the microbiome: a network perspective. Trends Microbiol. 2017; 25(3):217–28.
Article
CAS
PubMed
Google Scholar
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007; 449(7164):804–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sugino KY, Paneth N, Comstock SS. Michigan cohorts to determine associations of maternal pre-pregnancy body mass index with pregnancy and infant gastrointestinal microbial communities: late pregnancy and early infancy. PloS ONE. 2019; 14(3):e0213733.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Q, Lin SL, Kwok MK, Leung GM, Schooling CM. The roles of 27 genera of human gut microbiota in ischemic heart disease, type 2 diabetes mellitus, and their risk factors: a Mendelian randomization study. Am J Epidemiol. 2018; 187(9):1916–22.
Article
PubMed
Google Scholar
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al.Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014; 505(7484):559–63.
Article
CAS
PubMed
Google Scholar
Boulch ML, Déhais P, Combes S, Pascal G. The MACADAM database: a metabolic pathways database for microbial taxonomic groups for mining potential metabolic capacities of archaeal and bacterial taxonomic groups. Database. 2019; 2019:2019.
Article
CAS
Google Scholar
McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol Evol. 2019; 10(3):389–400.
Article
Google Scholar
Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014; 12(1):1–12.
Article
CAS
Google Scholar
Glassing A, Dowd SE, Galandiuk S, Davis B, Chiodini RJ. Inherent bacterial dna contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog. 2016; 8(1):1–12.
Article
CAS
Google Scholar
Jervis-Bardy J, Leong LEX, Marri S, Smith RJ, Choo JM Smith-Vaughan, Nosworthy E, Morris PS, O’Leary S, Rogers GB, et al.Deriving accurate microbiota profiles from human samples with low bacterial content through post-sequencing processing of Illumina MiSeq data. Microbiome. 2015; 3(1):1–11.
Article
Google Scholar
Kirstahler P, Bjerrum SS, Friis-Møller A, Cour ML, Aarestrup FM, Westh H, Pamp SJ. Genomics-based identification of microorganisms in human ocular body fluid. Sci Rep. 2018; 8(1):1–14.
Article
CAS
Google Scholar
Karstens L, Asquith M, Davin S, Fair D, Thomas GW, Wolfe AJ, Braun J, McWeeney S. Controlling for contaminants in low-biomass 16S rRNA gene sequencing experiments. MSystems. 2019; 4(4):e00290–19.
Article
PubMed
PubMed Central
Google Scholar
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018; 6(1):1–14.
Article
Google Scholar
Efron B, Hastie T. Computer age statistical inference, vol 5: Cambridge University Press; 2016.
Poudel R, Jumpponen A, Schlatter DC, Paulitz TC, McSpadden Gardener BB, Kinkel LL, Garrett KA. Microbiome networks: a systems framework for identifying candidate microbial assemblages for disease management. Phytopathology. 2016; 106(10):1083–96.
Article
CAS
PubMed
Google Scholar
Li C, Reeve J, Zhang L, Huang S, Wang X, Gmpr JC. A robust normalization method for zero-inflated count data with application to microbiome sequencing data. PeerJ. 2018c; e4600:6.
Manor O, Borenstein E. MUSiCC: a marker genes based framework for metagenomic normalization and accurate profiling of gene abundances in the microbiome. Genome Biol. 2015; 16(1):53.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schiffer L, Azhar R, Shepherd L, Ramos M, Geistlinger L, Huttenhower C, Dowd JB, Segata N, Waldron L. HMP16SData: efficient access to the human microbiome project through bioconductor. Am J Epidemiol. 2019. https://doi.org/10.1093/aje/kwz006.
Jiang R. mbImpute: an accurate and robust imputation method for microbiome data. URL https://github.com/ruochenj/mbImpute. R package version 0.1.0. Accessed 15 Dec 2020.
Jiang R, Li WV, Li JJ. mbImpute: an accurate and robust imputation method for microbiome data. 2021. URL https://doi.org/10.5281/zenodo.4840266.