Gerdes JT, Behr CF, Coors JG, Tracy WF. Compilation of North American maize breeding germplasm. Madison: Crop Science Society of America; 1993.
Wang Q, Dooner HK. Remarkable variation in maize genome structure inferred from haplotype diversity at the bz locus. Proc Natl Acad Sci U S A. 2006;103:17644–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics. 2003;165:2117–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ. Genetically transformed maize plants from protoplasts. Science. 1988;240:204–7.
Article
CAS
PubMed
Google Scholar
Vega JM, Yu W, Kennon AR, Chen X, Zhang ZJ. Improvement of Agrobacterium-mediated transformation in Hi-II maize (Zea mays) using standard binary vectors. Plant Cell Rep. 2008;27:297–305.
Article
CAS
PubMed
Google Scholar
Armstrong CL, Green CE, Phillips RL. Development and availability of germplasm with high type II culture formation response. Maize Genet Coop News Lett. 1991;65:92–3.
Google Scholar
Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu J, Krakowsky M, et al. Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc Natl Acad Sci U S A. 2011;108:7339–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–5.
Article
CAS
PubMed
Google Scholar
Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, et al. Improved maize reference genome with single-molecule technologies. Nature. 2017;546:524–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun S, Zhou Y, Chen J, Shi J, Zhao H, Zhao H, et al. Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet. 2018;50:1289–95.
Article
CAS
PubMed
Google Scholar
Yang N, Liu J, Gao Q, Gui S, Chen L, Yang L, et al. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet. 2019;51:1052–9.
Article
CAS
PubMed
Google Scholar
Ou S, Liu J, Chougule KM, Fungtammasan A, Seetharam AS, Stein JC, et al. Effect of sequence depth and length in long-read assembly of the maize inbred NC358. Nat Commun. 2020;11:2288.
Article
CAS
PubMed
PubMed Central
Google Scholar
Springer NM, Anderson SN, Andorf CM, Ahern KR, Bai F, Barad O, et al. The maize W22 genome provides a foundation for functional genomics and transposon biology. Nat Genet. 2018;50:1282–8.
Article
CAS
PubMed
Google Scholar
Hirsch CN, Hirsch CD, Brohammer AB, Bowman MJ, Soifer I, Barad O, et al. Draft assembly of elite inbred line PH207 provides insights into genomic and transcriptome diversity in maize. Plant Cell. 2016;28:2700–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haberer G, Kamal N, Bauer E, Gundlach H, Fischer I, Seidel MA, et al. European maize genomes highlight intraspecies variation in repeat and gene content. Nat Genet. 2020;52:950–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu J, Seetharam AS, Chougule K, Ou S, Swentowsky KW, Gent JI, et al. Gapless assembly of maize chromosomes using long-read technologies. Genome Biol. 2020;21:121.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu Y, Colantonio V, Müller BSF, Leach KA, Nanni A, Finegan C, et al. Genome assembly and population genomic analysis provide insights into the evolution of modern sweet corn. Nat Commun. 2021;12:1227.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hufford MB, Seetharam AS, Woodhouse MR. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. bioRxiv. 2021; biorxiv.org. https://doi.org/10.1101/2021.01.14.426684.
Clifton SW, Minx P, Fauron CM-R, Gibson M, Allen JO, Sun H, et al. Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol. 2004;136:3486–503.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bosacchi M, Gurdon C, Maliga P. Plastid genotyping reveals the uniformity of cytoplasmic male sterile-T maize cytoplasms. Plant Physiol. 2015;169:2129–37.
CAS
PubMed
PubMed Central
Google Scholar
He C, Lin G, Wei H, Tang H, White FF, Valent B, et al. Factorial estimating assembly base errors using k-mer abundance difference (KAD) between short reads and genome assembled sequences. NAR Genomics Bioinformatics. 2020;2:lqaa075.
Article
PubMed
CAS
PubMed Central
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
Article
PubMed
CAS
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kato A, Lamb JC, Birchler JA. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci U S A. 2004;101:13554–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lough AN, Roark LM, Kato A, Ream TS, Lamb JC, Birchler JA, et al. Mitochondrial DNA transfer to the nucleus generates extensive insertion site variation in maize. Genetics. 2008;178:47–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roark LM, Hui AY, Donnelly L, Birchler JA, Newton KJ. Recent and frequent insertions of chloroplast DNA into maize nuclear chromosomes. Cytogenet Genome Res. 2010;129:17–23.
Article
CAS
PubMed
Google Scholar
Hulbert SH. Structure and evolution of the rp1 complex conferring rust resistance in maize. Annu Rev Phytopathol. 1997;35:293–310.
Article
CAS
PubMed
Google Scholar
Hu Y, Ren J, Peng Z, Umana AA, Le H, Danilova T, et al. Analysis of extreme phenotype bulk copy number variation (XP-CNV) identified the association of rp1 with resistance to Goss’s wilt of maize. Front Plant Sci. Frontiers. 2018;9:110.
Article
PubMed
PubMed Central
Google Scholar
Smith SM, Pryor AJ, Hulbert SH. Allelic and haplotypic diversity at the rp1 rust resistance locus of maize. Genetics. 2004;167:1939–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun Q, Collins NC, Ayliffe M, Smith SM, Drake J, Pryor T, et al. Recombination between paralogues at the Rp1 rust resistance locus in maize. Genetics. 2001;158:423–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennetzen JL, Qin M-M, Ingels S, Ellingboe AH. Allele-specific and Mutator-associated instability at the Rpl disease-resistance locus of maize. Nature. Nature Publishing Group. 1988;332:369–70.
Article
Google Scholar
Goel M, Sun H, Jiao W-B, Schneeberger K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 2019;20:277.
Article
PubMed
PubMed Central
Google Scholar
Peng Z, Oliveira-Garcia E, Lin G, Hu Y, Dalby M, Migeon P, et al. Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS Genet. Public Library of Science San Francisco, CA USA. 2019;15:e1008272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morgan DT. A cytogenetic study of inversions in Zea mays. Genetics. 1950;35:153–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Zhang B, Chen Z, Zhang D, Zhang H, Wang H, et al. A PECTIN METHYLESTERASE gene at the maize Ga1 locus confers male function in unilateral cross-incompatibility. Nat Commun. 2018;9:3678.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vogel JT, Tan B-C, McCarty DR, Klee HJ. The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J Biol Chem. 2008;283:11364–73.
Article
CAS
PubMed
Google Scholar
Tan B-C, Guan J-C, Ding S, Wu S, Saunders JW, Koch KE, et al. Structure and origin of the white cap locus and its role in evolution of grain color in maize. Genetics. 2017;206:135–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, et al. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 2013;14:R55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Buckner B, Kelson TL, Robertson DS. Cloning of the y1 locus of maize, a gene involved in the biosynthesis of carotenoids. Plant Cell Am Soc Plant Biol. 1990;2:867–76.
CAS
Google Scholar
Phelps TL, Hall AE, Buckner B. Microsatellite repeat variation within the y1 gene of maize and teosinte. J Hered. 1996;87:396–9.
Article
CAS
PubMed
Google Scholar
Grotewold E, Drummond BJ, Bowen B, Peterson T. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell. 1994;76:543–53.
Article
CAS
PubMed
Google Scholar
Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M-J, et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell. 2016;28:1998–2015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salvo S, Cook J, Carlson AR, Hirsch CN, Kaeppler SM, Kaeppler HF. Genetic fine-mapping of a quantitative trait locus (QTL) associated with embryogenic tissue culture response and plant regeneration ability in maize (Zea mays L.). Plant Genome. 2018;11:170111.
Article
CAS
Google Scholar
Li Q, Gent JI, Zynda G, Song J, Makarevitch I, Hirsch CD, et al. RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. Proc Natl Acad Sci U S A. 2015;112:14728–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gent JI, Ellis NA, Guo L, Harkess AE, Yao Y, Zhang X, et al. CHH islands: de novo DNA methylation in near-gene chromatin regulation in maize. Genome Res. 2013;23:628–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sartor RC, Noshay J, Springer NM, Briggs SP. Identification of the expressome by machine learning on omics data. Proc Natl Acad Sci U S A. 2019;116:18119–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Song J, West PT, Zynda G, Eichten SR, Vaughn MW, et al. Examining the causes and consequences of context-specific differential DNA methylation in maize. Plant Physiol. 2015;168:1262–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stelpflug SC, Sekhon RS, Vaillancourt B, Hirsch CN, Robin Buell C, de Leon N, et al. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome. 2016;9:lantgenome2015.04.0025.
Article
CAS
Google Scholar
Chandler K, Lipka AE, Owens BF, Li H, Buckler ES, Rocheford T, et al. Genetic analysis of visually scored orange kernel color in maize. Crop Sci. 2013;53:189–200.
Article
CAS
Google Scholar
Owens BF, Mathew D, Diepenbrock CH, Tiede T, Wu D, Mateos-Hernandez M, et al. Genome-wide association study and pathway-level analysis of kernel color in maize. G3. 2019;1:183–6.
Google Scholar
Ikeuchi M, Sugimoto K, Iwase A. Plant callus: mechanisms of induction and repression. Plant Cell. 2013;25:3159–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu L, Li N, Zhang Z, Meng X, Dong Q, Xu C, et al. CG hypomethylation leads to complex changes in DNA methylation and transpositional burst of diverse transposable elements in callus cultures of rice. Plant J. 2020;101:188–203.
Article
CAS
PubMed
Google Scholar
Lee M, Phillips RL. The chromosomal basis of somaclonal variation. Annu Rev Plant Physiol Plant Mol Biol. Annual Reviews 4139 El Camino Way, PO Box 10139, Palo Alto, CA 94303-0139, USA. 1988;39:413–37.
Article
Google Scholar
Boyko A, Kathiria P, Zemp FJ, Yao Y, Pogribny I, Kovalchuk I. Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability). Nucleic Acids Res. 2007;35:1714–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu H, Ma L, Yang X, Zhang L, Zeng X, Xie S, et al. Integrative analysis of DNA methylation, mRNAs, and small RNAs during maize embryo dedifferentiation. BMC Plant Biol. 2017;17:105.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nobuta K, Lu C, Shrivastava R, Pillay M, De Paoli E, Accerbi M, et al. Distinct size distribution of endogeneous siRNAs in maize: evidence from deep sequencing in the mop1-1 mutant. Proc Natl Acad Sci U S A. 2008;105:14958–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han Z, Crisp PA, Stelpflug S, Kaeppler SM, Li Q, Springer NM. Heritable epigenomic changes to the maize methylome resulting from tissue culture. Genetics. 2018;209:983–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaeppler SM, Phillips RL. Tissue culture-induced DNA methylation variation in maize. Proc Natl Acad Sci U S A. 1993;90:8773–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stroud H, Ding B, Simon SA, Feng S, Bellizzi M, Pellegrini M, et al. Plants regenerated from tissue culture contain stable epigenome changes in rice. Elife. 2013;2:e00354.
Article
PubMed
PubMed Central
Google Scholar
Zhang M, Zhang Y, Scheuring CF, Wu C-C, Dong JJ, Zhang H-B. Preparation of megabase-sized DNA from a variety of organisms using the nuclei method for advanced genomics research. Nat Protoc. 2012;7:467–78.
Article
CAS
PubMed
Google Scholar
Liu S, Zheng J, Migeon P, Ren J, Hu Y, He C, et al. Unbiased k-mer analysis reveals changes in copy number of highly repetitive sequences during maize domestication and improvement. Sci Rep. 2017;7:42444.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.
Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. Narnia. 2010;26:589–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alonge M, Soyk S, Ramakrishnan S, Wang X, Goodwin S, Sedlazeck FJ, et al. RaGOO: fast and accurate reference-guided scaffolding of draft genomes. Genome Biol. 2019;20:224.
Article
PubMed
PubMed Central
Google Scholar
Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics. 2016;32:2103–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ott A, Liu S, Schnable JC, Yeh CTE. tGBS® genotyping-by-sequencing enables reliable genotyping of heterozygous loci. Nucleic Acids. academic.oup.com. 2017;45:e178.
Article
CAS
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu Y, Bhat PR, Close TJ, Lonardi S. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet. 2008;4:e1000212.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol. 2018;14:e1005944.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tang H, Zhang X, Miao C, Zhang J, Ming R, Schnable JC, et al. ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol. 2015;16:3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu S, Yeh C-T, Ji T, Ying K, Wu H, Tang HM, et al. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet. 2009;5:e1000733.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rakshit S, Rashid Z, Sekhar JC, Fatma T, Dass S. Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) inbreds. Plant Cell Tissue Organ Cult. Springer. 2010;100:31–7.
Google Scholar
Chu C. Establishment of an efficient medium for another culture of rice through comparative experiments on the nitrogen sources. Sci Sin. 1975;18:223–31.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019;20:278.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57:289–300.
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–2.
Article
Google Scholar
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011;12:491.
Article
PubMed
PubMed Central
Google Scholar
Smit AFA, Hubley R, Green P. RepeatMasker. Open-40. 2013-2015.
Ou S, Su W, Liao Y, Chougule K, Agda JRA, Hellinga AJ, et al. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 2019;20:275.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5:59.
Article
PubMed
PubMed Central
Google Scholar
Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19(Suppl 2):ii215–25.
Article
PubMed
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. Synteny and collinearity in plant genomes. Science. 2008;320:486–8.
Article
CAS
PubMed
Google Scholar
Li L, Stoeckert CJ Jr, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steuernagel B, Witek K, Krattinger SG, Ramirez-Gonzalez RH, Schoonbeek H-J, Yu G, et al. The NLR-Annotator tool enables annotation of the intracellular immune receptor repertoire. Plant Physiol. 2020;183:468–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12.
Article
PubMed
PubMed Central
Google Scholar
Bukowski R, Guo X, Lu Y, Zou C, He B, Rong Z, et al. Construction of the third-generation Zea mays haplotype map. Gigascience. 2018;7:1–12.
Article
PubMed
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hufford MB, Xu X, van Heerwaarden J, Pyhäjärvi T, Chia J-M, Cartwright RA, et al. Comparative population genomics of maize domestication and improvement. Nat Genet. 2012;44:808–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koo D-H, Jiang J. Super-stretched pachytene chromosomes for fluorescence in situ hybridization mapping and immunodetection of DNA methylation. Plant J. Wiley Online Library. 2009;59:509–16.
Article
CAS
PubMed
Google Scholar
Koo D-H, Zhao H, Jiang J. Chromatin-associated transcripts of tandemly repetitive DNA sequences revealed by RNA-FISH. Chromosome Res. 2016;24:467–80.
Article
CAS
PubMed
Google Scholar
Koo D-H, Han F, Birchler JA, Jiang J. Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. Genome Res. 2011;21:908–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Broman KW, Wu H, Sen S, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003;19:889–90.
Article
CAS
PubMed
Google Scholar
Mishra P, Singh NK. Spectrophotometric and TLC based characterization of kernel carotenoids in short duration maize. Maydica. 2010;55:95.
Google Scholar
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bastian M, Heymann S, Jacomy M. Others. Gephi: an open source software for exploring and manipulating networks. Icwsm. San Jose, California. 2009;8:361–2.
Google Scholar
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin G, He C, Zheng J, Koo D-H, Le H, Zheng H, et al. Chromosome-level genome assembly of a regenerable maize inbred line A188. NCBI GenBank. https://www.ncbi.nlm.nih.gov/nuccore/JABWIA000000000.1. 2020.
Lin G, He C, Zheng J, Koo D-H, Le H, Zheng H, et al. Chromosome-level genome assembly of a regenerable maize inbred line A188. MaizeGDB. https://download.maizegdb.org/Zm-A188-REFERENCE-KSU-1.0. 2020.
Lin G, He C, Zheng J, Koo D-H, Le H, Zheng H, et al. Chromosome-level genome assembly of a regenerable maize inbred line A188. NCBI SRA. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA635654. 2020.
Lin G, He C, Zheng J, Koo D-H, Le H, Zheng H, et al. Script documents for genome assembly of the maize inbred line A188. Zenodo. 2021. https://doi.org/10.5281/zenodo.4758770.
Lin G, He C, Zheng J, Koo D-H, Le H, Zheng H, et al. Chromosome-level genome assembly of a regenerable maize inbred line A188. GitHub. https://github.com/liu3zhenlab/A188Ref1. 2020.
Lin G, Liu S. Comparative genomic read depth for studying genomic copy number variation. Zenodo. 2021. https://doi.org/10.5281/zenodo.4758649.
Lin G, He C, Zheng J, Koo D-H, Le H, Zheng H, et al. Chromosome-level genome assembly of a regenerable maize inbred line A188. GitHub. https://github.com/liu3zhenlab/CGRD. 2020.