Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.
Article
CAS
Google Scholar
Parmar JJ, Woringer M, Zimmer C. How the genome folds: the biophysics of four-dimensional chromatin organization. Annu Rev Biophys. 2019;48:231–53, 1. https://doi.org/10.1146/annurev-biophys-052118-115638.
Article
CAS
PubMed
Google Scholar
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–80.
Article
CAS
Google Scholar
Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature. 2012;485:381–5.
Article
CAS
Google Scholar
Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL. A 3D map of the human genome at Kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665–80, 7. https://doi.org/10.1016/j.cell.2014.11.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krijger PHL, de Laat W. Regulation of disease-associated gene expression in the 3D genome. Nat Rev Mol Cell Biol. 2016;17:771–82, 12. https://doi.org/10.1038/nrm.2016.138.
Article
CAS
PubMed
Google Scholar
Gassler J, Brandão HB, Imakaev M, Flyamer IM, Ladstätter S, Bickmore WA, et al. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J. 2017;36:3600–18.
Article
CAS
Google Scholar
Rao SSP, Huang S-C, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon K-R, et al. Cohesin loss eliminates all loop domains. Cell. 2017;171:305–320.e24.
Article
CAS
Google Scholar
Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature. 2017;551:51.
Article
Google Scholar
Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, Schoenfelder S, Jessberger G, Muhar M, Hossain MJ, Walther N, Koch B, Kueblbeck M, Ellenberg J, Zuber J, Fraser P, Peters JM. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 2017;36:3573–99, 24. https://doi.org/10.15252/embj.201798004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of chromosomal domains by loop extrusion. Cell Repr. 2016;15:2038–49, 9. https://doi.org/10.1016/j.celrep.2016.04.085.
Article
CAS
Google Scholar
Sanborn AL, Rao SSP, Huang S-C, Durand NC, Huntley MH, Jewett AI, et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci. 2015;112:201518552.
Article
Google Scholar
Fudenberg G, Imakaev M. FISH-ing for captured contacts: towards reconciling FISH and 3C. Nat Methods. 2017;14:673–8, 7. https://doi.org/10.1038/nmeth.4329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williamson I, Berlivet S, Eskeland R, Boyle S, Illingworth RS, Paquette D, Dostie J, Bickmore WA. Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev. 2014;28:2778–91, 24. https://doi.org/10.1101/gad.251694.114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giorgetti L, Heard E. Closing the loop: 3C versus DNA FISH. Genome Biol. 2016;17:215.
Article
Google Scholar
Rosa A, Zimmer C. Computational models of large-scale genome architecture. Int Rev Cell Mol Biol. 2014;307:275–349.
Flyamer IM, Gassler J, Imakaev M, Brandão HB, Ulianov SV, Abdennur N, Razin SV, Mirny LA, Tachibana-Konwalski K. Single-nucleus hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature. 2017;544:110–4, 7648. https://doi.org/10.1038/nature21711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 2013;502:59–64.
Article
CAS
Google Scholar
Ricci MA, Manzo C, García-Parajo MF, Lakadamyali M, Cosma MP. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo. Cell. 2015;160:1145–58, 6. https://doi.org/10.1016/j.cell.2015.01.054.
Article
CAS
PubMed
Google Scholar
Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O’Shea CC. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science. 2017;357:eaag0025.
Article
Google Scholar
Nozaki T, Imai R, Tanbo M, Nagashima R, Tamura S, Tani T, et al. Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol Cell. 2017;67:282–293.e7.
Article
CAS
Google Scholar
Shaban HA, Barth R, Bystricky K. Formation of correlated chromatin domains at nanoscale dynamic resolution during transcription. Nucleic Acids Res. 2018;46:e77–13. https://doi.org/10.1093/nar/gky269.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiang W, Roberti MJ, Hériché J-K, Huet S, Alexander S, Ellenberg J. Correlative live and super-resolution imaging reveals the dynamic structure of replication domains. J Cell Biol. 2018;217:1973–84, 6. https://doi.org/10.1083/jcb.201709074.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zidovska A, Weitz DA, Mitchison TJ. Micron-scale coherence in interphase chromatin dynamics. Proc Natl Acad Sci. 2013;110:15555–60, 39. https://doi.org/10.1073/pnas.1220313110.
Article
PubMed
Google Scholar
Cremer T, Cremer M. Chromosome territories. Cold Spring Harb Perspect Biol. 2010;2:a003889.
Article
Google Scholar
Beliveau BJ, Boettiger AN, Avendaño MS, Jungmann R, RB MC, Joyce EF, et al. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat Commun. 2015;6:7147.
Article
CAS
Google Scholar
Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ, Fudenberg G, et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature. 2016;529:418–22.
Article
CAS
Google Scholar
Cardozo Gizzi AM, Cattoni DI, Fiche J-B, Espinola SM, Gurgo J, Messina O, et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol Cell. 2019;74:212–222.e5.
Article
CAS
Google Scholar
Szabo Q, Jost D, Chang J-M, Cattoni DI, Papadopoulos GL, Bonev B, et al. TADs are 3D structural units of higher-order chromosome organization in Drosophila. Sci Adv. 2018;4:eaar8082.
Article
Google Scholar
Bintu B, Mateo LJ, Su J-H, Sinnott-Armstrong NA, Parker M, Kinrot S, et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science. 2018;362:eaau1783.
Article
Google Scholar
Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci. 2008;105:2415–20, 7. https://doi.org/10.1073/pnas.0712168105.
Article
PubMed
Google Scholar
Neef AB, Luedtke NW. Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proc Natl Acad Sci. 2011;108:20404–9, 51. https://doi.org/10.1073/pnas.1101126108.
Article
PubMed
Google Scholar
Fang K, Chen X, Li X, Shen Y, Sun J, Czajkowsky DM, Shao Z. Super-resolution imaging of individual human subchromosomal regions in situ reveals Nanoscopic building blocks of higher-order structure. ACS Nano Am Chem Soc. 2018;12:4909–18, 5. https://doi.org/10.1021/acsnano.8b01963.
Article
CAS
Google Scholar
Zessin PJM, Finan K, Heilemann M. Super-resolution fluorescence imaging of chromosomal DNA. J Struct Biol. 2012;177:344–8, 2. https://doi.org/10.1016/j.jsb.2011.12.015.
Article
CAS
PubMed
Google Scholar
Aristov A, Lelandais B, Rensen E, Zimmer C. ZOLA-3D allows flexible 3D localization microscopy over an adjustable axial range. Nat Commun. 2018;9:2409, 1. https://doi.org/10.1038/s41467-018-04709-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Talarek N, Petit J, Gueydon E, Schwob E. EdU incorporation for FACS and microscopy analysis of DNA replication in budding yeast. In: Vengrova S, Dalgaard J, editors. DNA Replication Methods Protoc. New York: Springer New York; 2015. p. 105–12. https://doi.org/10.1007/978-1-4939-2596-4_7. [cited 2019 Aug 28].
Chapter
Google Scholar
Cseresnyes Z, Schwarz U, Green CM. Analysis of replication factories in human cells by super-resolution light microscopy. BMC Cell Biol. 2009;10:88, 1. https://doi.org/10.1186/1471-2121-10-88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shinin V, Gayraud-Morel B, Gomès D, Tajbakhsh S. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol. 2006;8:677, 7, 682. https://doi.org/10.1038/ncb1425.
Article
CAS
Google Scholar
Miron E, Innocent C, Heyde S, Schermelleh L. In vivo and in situ replication labeling methods for super-resolution structured illumination microscopy of chromosome territories and chromatin domains. In: Leake MC, editor. Chromosome Archit Methods Protoc. New York: Springer New York; 2016. p. 127–40. https://doi.org/10.1007/978-1-4939-3631-1_10. [cited 2019 Jul 11].
Chapter
Google Scholar
Stults DM, Killen MW, Pierce AJ. The sister chromatid exchange (SCE) assay. In: Keohavong P, Grant SG, editors. Mol Toxicol Protoc. Totowa: Humana Press; 2014. p. 439–55. https://doi.org/10.1007/978-1-62703-739-6_32. [cited 2019 Jul 11].
Chapter
Google Scholar
Kato H. Spontaneous sister chromatid exchanges detected by a BUdR-labelling method. Nature. 1974;251:70, 5470, 72. https://doi.org/10.1038/251070a0.
Article
Google Scholar
Davidson RL, Kaufman ER, Dougherty CP, Ouellette AM, DiFolco CM, Latt SA. Induction of sister chromatid exchanges by BUdR is largely independent of the BUdR content of DNA. Nature. 1980;284:74–6, 5751. https://doi.org/10.1038/284074a0.
Article
Google Scholar
Heartlein MW, O’Neill JP, Preston RJ. SCE induction is proportional to substitution in DNA for thymidine by CldU and BrdU. Mutat Res Mol Mech Mutagen. 1983;107:103–9, 1. https://doi.org/10.1016/0027-5107(83)90081-7.
Article
CAS
Google Scholar
Wolff S. Sister chromatid exchange. Annu Rev Genet. 1977;11:183–201, 1. https://doi.org/10.1146/annurev.ge.11.120177.001151.
Article
CAS
PubMed
Google Scholar
Kantidakis T, Saponaro M, Mitter R, Horswell S, Kranz A, Boeing S, Aygün O, Kelly GP, Matthews N, Stewart A, Stewart AF, Svejstrup JQ. Mutation of cancer driver MLL2 results in transcription stress and genome instability. Genes Dev. 2016;30:408–20, 4. https://doi.org/10.1101/gad.275453.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA. Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc Natl Acad Sci. 2018;115:E6697–706, 29. https://doi.org/10.1073/pnas.1717730115.
Article
CAS
PubMed
Google Scholar
Banterle N, Bui KH, Lemke EA, Beck M. Fourier ring correlation as a resolution criterion for super-resolution microscopy. J Struct Biol. 2013;183:363–7, 3. https://doi.org/10.1016/j.jsb.2013.05.004.
Article
CAS
PubMed
Google Scholar
Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, Dekker J. Organization of the mitotic chromosome. Science. 2013;342:948–53, 6161. https://doi.org/10.1126/science.1236083.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levet F, Hosy E, Kechkar A, Butler C, Beghin A, Choquet D, Sibarita JB. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat Methods. 2015;12:1065–71, 11. https://doi.org/10.1038/nmeth.3579.
Article
CAS
PubMed
Google Scholar
Andronov L, Orlov I, Lutz Y, Vonesch J-L, Klaholz BP. ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy. Sci Rep. 2016;6:24084, 1. https://doi.org/10.1038/srep24084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, Nuebler J, et al. A pathway for mitotic chromosome formation. Science. 2018;359:eaao6135.
Article
Google Scholar
Natsume T, Kiyomitsu T, Saga Y, Kanemaki MT. Rapid protein depletion in human cells by auxin-inducible Degron tagging with short homology donors. Cell Rep. 2016;15:210–8, 1. https://doi.org/10.1016/j.celrep.2016.03.001.
Article
CAS
PubMed
Google Scholar
Arbona J-M, Herbert S, Fabre E, Zimmer C. Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations. Genome Biol. 2017;18:81, 1. https://doi.org/10.1186/s13059-017-1199-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cattoglio C, Pustova I, Walther N, Ho JJ, Hantsche-Grininger M, Inouye CJ, et al. Determining cellular CTCF and cohesin abundances to constrain 3D genome models. eLife. 2019;8 Available from: https://europepmc.org/articles/PMC6579579/. [cited 2019 Jul 11]
Holzmann J, Politi AZ, Nagasaka K, Hantsche-Grininger M, Walther N, Koch B, et al. Absolute quantification of cohesin, CTCF and their regulators in human cells. Sherratt DJ, Struhl K, Sherratt DJ, editors. eLife. 2019;8:e46269.
Article
Google Scholar
Lakadamyali M, Cosma MP. Visualizing the genome in high resolution challenges our textbook understanding. Nat Methods. 2020;17:371–9, 4. https://doi.org/10.1038/s41592-020-0758-3.
Article
CAS
PubMed
Google Scholar
Takei Y, Yun J, Zheng S, Ollikainen N, Pierson N, White J, et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature. 2021;590:344–50.
Markaki Y, Smeets D, Fiedler S, Schmid VJ, Schermelleh L, Cremer T, Cremer M. The potential of 3D-FISH and super-resolution structured illumination microscopy for studies of 3D nuclear architecture: 3D structured illumination microscopy of defined chromosomal structures visualized by 3D (immuno)-FISH opens new perspectives for stud. BioEssays News Rev Mol Cell Dev Biol. 2012;34:412–26, 5. https://doi.org/10.1002/bies.201100176.
Article
Google Scholar
Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T. Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res. 2002;276:10–23, 1. https://doi.org/10.1006/excr.2002.5513.
Article
CAS
PubMed
Google Scholar
Dumitrache LC, Hu L, Son MY, Li H, Wesevich A, Scully R, Stark J, Hasty P. Trex2 enables spontaneous sister chromatid exchanges without facilitating DNA double-strand break repair. Genetics. 2011;188:787–97, 4. https://doi.org/10.1534/genetics.111.129833.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu K, Babcock HP, Zhuang X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods. 2012;9:185–8.
Article
CAS
Google Scholar
Asaeedi S, Didehvar F, Mohades A. α-Concave hull, a generalization of convex hull. Theor Comput Sci. 2017;702:48–59. https://doi.org/10.1016/j.tcs.2017.08.014.
Article
Google Scholar
Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, Aiden EL. Juicer provides a one-click system for analyzing loop-resolution hi-C experiments. Cell Syst. 2016;3:95–8, 1. https://doi.org/10.1016/j.cels.2016.07.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cremer M, Brandstetter K, Maiser A, Rao SSP, Schmid VJ, Guirao-Ortiz M, et al. Cohesin depleted cells rebuild functional nuclear compartments after endomitosis. Nat Commun. 2020;11:6146.
Article
CAS
Google Scholar
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19, 1. https://doi.org/10.1006/jcph.1995.1039.
Article
CAS
Google Scholar
Lelandais B. VoroQuant: High resolution chromosome analysis. Available from: https://github.com/imodpasteur/VoroQuant. Accessed 1 Feb 2021.
Lelandais, Benoît. imodpasteur/VoroQuant. Zenodo; 2021. Available from: https://zenodo.org/badge/latestdoi/320236853. [cited 2021 Mar 30]
UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly - GC percentage. Available from: https://hgdownload.soe.ucsc.edu/goldenPath/hg19/gc5Base/. Accessed 30 Jan 2021.