Chen X, Teichmann SA, Meyer KB. From tissues to cell types and back: single-cell gene expression analysis of tissue architecture. Annu Rev Biomed Data Sci. 2018;1:29–51.
Article
Google Scholar
Lein E, Borm LE, Linnarsson S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science. 2017;358:64–9.
Article
CAS
PubMed
Google Scholar
Kelsey G, Stegle O, Reik W. Single-cell epigenomics: recording the past and predicting the future. Science. 2017;358:69–75.
Article
CAS
PubMed
Google Scholar
Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA. Single-cell transcriptomics to explore the immune system in health and disease. Science. 2017;358:58–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 2018;13:599–604.
Article
CAS
PubMed
Google Scholar
Nelms B, Walbot V. Defining the developmental program leading to meiosis in maize. Science. 2019;364:52–6.
Article
CAS
PubMed
Google Scholar
Han Y, Chu X, Yu H, Ma Y-K, Wang X-J, Qian W, Jiao Y. Single-cell transcriptome analysis reveals widespread monoallelic gene expression in individual rice mesophyll cells. Sci Bull. 2017;62:1304–14.
Article
CAS
Google Scholar
Luo C, Fernie AR, Yan J. Single-cell genomics and epigenomics: technologies and applications in plants. Trends Plant Sci. 2020;25:1030–40.
Article
CAS
PubMed
Google Scholar
Macosko Evan Z, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas Allison R, Kamitaki N, Martersteck Emily M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rich-Griffin C, Stechemesser A, Finch J, Lucas E, Ott S, Schäfer P. Single-cell transcriptomics: a high-resolution avenue for plant functional genomics. Trends Plant Sci. 2020;25:186–97.
Article
CAS
PubMed
Google Scholar
Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MCP. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Dev. Cell. 2019;48:840–52 e845.
Article
CAS
PubMed
Google Scholar
Jean-Baptiste K, McFaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L, Bubb KL, Trapnell C, Fields S, Queitsch C, Cuperus JT. Dynamics of gene expression in single root cells of Arabidopsis thaliana. Plant Cell. 2019;31:993–1011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shulse CN, Cole BJ, Ciobanu D, Lin J, Yoshinaga Y, Gouran M, Turco GM, Zhu Y, O’Malley RC, Brady SM, Dickel DE. High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep. 2019;27:2241–7 e2244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryu KH, Huang L, Kang HM, Schiefelbein J. Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiol. 2019;179:1444–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang T-Q, Xu Z-G, Shang G-D, Wang J-W. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Mol Plant. 2019;12:648–60.
Article
CAS
PubMed
Google Scholar
Wendrich JR, Yang B, Vandamme N, Verstaen K, Smet W, Van de Velde C, Minne M, Wybouw B, Mor E, Arents HE, et al. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science. 2020;370:eaay4970.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahan R, Hsu C-W, Nolan TM, Cole BJ, Taylor IW, Vlot AHC, Benfey PN, Ohler U: A single cell Arabidopsis root atlas reveals developmental trajectories in wild type and cell identity mutants. bioRxiv 2020:2020.2006.2029.178863.
Liu Q, Liang Z, Feng D, Jiang S, Wang Y, Du Z, Li R, Hu G, Zhang P, Ma Y, et al. Transcriptional landscape of rice roots at the single cell resolution. Mol Plant. 2020; https://doi.org/10.1016/j.molp.2020.12.014.
Satterlee JW, Strable J, Scanlon MJ. Plant stem-cell organization and differentiation at single-cell resolution. Proc Natl Acad Sci U S A. 2020;117:33689-99.
Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN. A gene expression map of the Arabidopsis root. Science. 2003;302:1956.
Article
CAS
PubMed
Google Scholar
Brady SM, Orlando DA, Lee J-Y, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science. 2007;318:801.
Article
CAS
PubMed
Google Scholar
Li S, Yamada M, Han X, Ohler U, Benfey Philip N. High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation. Dev Cell. 2016;39:508–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia J, Long Y, Zhang H, Li Z, Liu Z, Zhao Y, Lu D, Jin X, Deng X, Xia R, et al. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. Nat Plants. 2020;6:780–8.
Article
CAS
PubMed
Google Scholar
Lebrigand K, Magnone V, Barbry P, Waldmann R. High throughput error corrected Nanopore single cell transcriptome sequencing. Nat Commun. 2020;11:4025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Volden R, Vollmers C: Highly multiplexed single-cell full-length cDNA sequencing of human immune cells with 10x Genomics and R2C2. bioRxiv 2020:2020.2001.2010.902361.
Gupta I, Collier PG, Haase B, Mahfouz A, Joglekar A, Floyd T, Koopmans F, Barres B, Smit AB, Sloan SA, et al. Single-cell isoform RNA sequencing characterizes isoforms in thousands of cerebellar cells. Nat Biotechnol. 2018;36:1197–202.
Article
CAS
Google Scholar
Drapek C, Sparks EE, Benfey PN. Uncovering gene regulatory networks controlling plant cell differentiation. Trends Genet. 2017;33:529–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parker MT, Knop K, Sherwood AV, Schurch NJ, Mackinnon K, Gould PD, Hall AJW, Barton GJ, Simpson GG. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification. eLife. 2020;9:e49658.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech Theory Exp. 2008;2008:P10008.
Article
Google Scholar
Hie B, Bryson B, Berger B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat Biotechnol. 2019;37:685–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krause M, Niazi AM, Labun K, Torres Cleuren YN, Müller FS, Valen E. tailfindr: alignment-free poly(A) length measurement for Oxford Nanopore RNA and DNA sequencing. RNA. 2019;25:1229–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng G, Yoo M-J, Davenport R, Boatwright JL, Koh J, Chen S, Barbazuk WB. Jasmonate induced alternative splicing responses in Arabidopsis. Plant Direct. 2020;4:e00245.
CAS
PubMed
PubMed Central
Google Scholar
Bleckmann A, Alter S, Dresselhaus T. The beginning of a seed: regulatory mechanisms of double fertilization. Front Plant Sci. 2014;5:452.
Lafon-Placette C, Köhler C. Embryo and endosperm, partners in seed development. Curr Opin Plant Biol. 2014;17:64–9.
Article
PubMed
Google Scholar
Gehring M, Choi Y, Fischer RL. Imprinting and seed development. Plant Cell. 2004;16:S203.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sorensen MB, Mayer U, Lukowitz W, Robert H, Chambrier P, Jurgens G, Somerville C, Lepiniec L, Berger F. Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development. 2002;129:5567–76.
Article
CAS
PubMed
Google Scholar
Brown RC, Lemmon BE, Nguyen H. Events during the first four rounds of mitosis establish three developmental domains in the syncytial endosperm of Arabidopsis thaliana. Protoplasma. 2003;222:167–74.
Article
CAS
PubMed
Google Scholar
Brown RC, Lemmon BE, Nguyen H, Olsen O-A. Development of endosperm in Arabidopsis thaliana. Sex Plant Reprod. 1999;12:32–42.
Article
Google Scholar
Gehring M, Missirian V, Henikoff S. Genomic analysis of parent-of-origin allelic expression in Arabidopsis thaliana seeds. PLoS One. 2011;6:e23687.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsieh T-F, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ, Hashimoto M, Kirkbride RC, Harada JJ, Zilberman D, Fischer RL. Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci U S A. 2011;108:1755.
Article
CAS
PubMed
PubMed Central
Google Scholar
Del Toro-De León G, Köhler C. Endosperm-specific transcriptome analysis by applying the INTACT system. Plant Reprod. 2019;32:55–61.
Article
CAS
Google Scholar
Day RC, Herridge RP, Ambrose BA, Macknight RC. Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol. 2008;148:1964.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pignatta D, Erdmann RM, Scheer E, Picard CL, Bell GW, Gehring M. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. eLife. 2014;3:e03198.
Article
PubMed
PubMed Central
Google Scholar
Moreno-Romero J, Santos-González J, Hennig L, Köhler C. Applying the INTACT method to purify endosperm nuclei and to generate parental-specific epigenome profiles. Nat Protoc. 2017;12:238–54.
Article
CAS
PubMed
Google Scholar
Moreno-Romero J, Del Toro-De León G, Yadav VK, Santos-González J, Köhler C. Epigenetic signatures associated with imprinted paternally expressed genes in the Arabidopsis endosperm. Genome Biol. 2019;20:41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeisel A, Köstler WJ, Molotski N, Tsai JM, Krauthgamer R, Jacob-Hirsch J, Rechavi G, Soen Y, Jung S, Yarden Y, Domany E. Coupled pre-mRNA and mRNA dynamics unveil operational strategies underlying transcriptional responses to stimuli. Mol Syst Biol. 2011;7:529.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gaidatzis D, Burger L, Florescu M, Stadler MB. Analysis of intronic and exonic reads in RNA-seq data characterizes transcriptional and post-transcriptional regulation. Nat Biotechnol. 2015;33:722–9.
Article
CAS
PubMed
Google Scholar
La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lönnerberg P, Furlan A, et al. RNA velocity of single cells. Nature. 2018;560:494–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020;38:1408–14.
Article
PubMed
CAS
Google Scholar
Schon MA, Nodine MD. Widespread contamination of Arabidopsis embryo and endosperm transcriptome data sets. Plant Cell. 2017;29:608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belmonte MF, Kirkbride RC, Stone SL, Pelletier JM, Bui AQ, Yeung EC, Hashimoto M, Fei J, Harada CM, Munoz MD, et al. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci U S A. 2013;110:E435.
Article
CAS
PubMed
PubMed Central
Google Scholar
Orozco-Arroyo G, Paolo D, Ezquer I, Colombo L. Networks controlling seed size in Arabidopsis. Plant Reprod. 2015;28:17–32.
Article
CAS
PubMed
Google Scholar
Habib N, Li Y, Heidenreich M, Swiech L, Avraham-Davidi I, Trombetta JJ, Hession C, Zhang F, Regev A. Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science. 2016;353:925.
Article
CAS
PubMed
PubMed Central
Google Scholar
Habib N, Avraham-Davidi I, Basu A, Burks T, Shekhar K, Hofree M, Choudhury SR, Aguet F, Gelfand E, Ardlie K, et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods. 2017;14:955–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding J, Adiconis X, Simmons SK, Kowalczyk MS, Hession CC, Marjanovic ND, Hughes TK, Wadsworth MH, Burks T, Nguyen LT, et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol. 2020;38:737–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krienen FM, Goldman M, Zhang Q, C. H. del Rosario R, Florio M, Machold R, Saunders A, Levandowski K, Zaniewski H, Schuman B, et al: Innovations present in the primate interneuron repertoire. Nature 2020, 586:262–269.
Thibivilliers S, Anderson D, Libault M. Isolation of plant root nuclei for single cell RNA sequencing. Curr Protoc Plant Biol. 2020;5:e20120.
Article
CAS
PubMed
Google Scholar
Picard CL, Povilus RA, Williams BP, Gehring M: Single nucleus analysis of Arabidopsis seeds reveals new cell types and imprinting dynamics. bioRxiv 2020:2020.2008.2025.267476.
Tian C, Du Q, Xu M, Du F, Jiao Y: Single-nucleus RNA-seq resolves spatiotemporal developmental trajectories in the tomato shoot apex. bioRxiv 2020:2020.2009.2020.305029.
Farmer A, Thibivilliers S, Ryu KH, Schiefelbein J, Libault M. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Mol Plant. 2021; https://doi.org/10.1016/j.molp.2021.01.001.
Sunaga-Franze DY, Muino JM, Braeuning C, Xu X, Zong M, Smaczniak C, Yan W, Fischer C, Vidal R, Kliem M, et al: Single-nuclei RNA-sequencing of plants. bioRxiv 2020:2020.2011.2014.382812.
Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, Linker SB, Pham S, Erwin JA, Miller JA, et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc. 2016;11:499–524.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell. 2006;124:495–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, et al. Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science. 2012;337:1360–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19:15.
Article
PubMed
PubMed Central
Google Scholar
Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45:W122–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics. 2002;18:452–64.
Article
CAS
PubMed
Google Scholar
Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Liu M, Downie B, Liang C, Ji G, Li QQ, Hunt AG. Genome-wide landscape of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation. Proc Natl Acad Sci U S A. 2011;108:12533.
Article
CAS
PubMed
PubMed Central
Google Scholar
Long Y, Liu Z, Jia J, Mo W, Fang L, Lu D, Liu B, Zhang H, Chen W, Zhai J. A protoplasting-free approach for high-throughput full-length single-cell RNA profiling in plants. Datasets. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA664874 (2020). Accessed 21 Sep 2020.
Long Y, Liu Z, Jia J, Mo W, Fang L, Lu D, Liu B, Zhang H, Chen W, Zhai J. Single-nucleus full-length RNA profiling of endosperm. Datasets. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA685588 (2021). Accessed 16 Dec 2020.
Long Y, Liu Z, Jia J, Mo W, Fang L, Lu D, Liu B, Zhang H, Chen W, Zhai J. Single-nucleus nanopore reads processing pipeline. zenode. https://doi.org/10.5281/zenodo.4467583 (2021). Accessed 26 Jan 2021.
Long Y, Liu Z, Jia J, Mo W, Fang L, Lu D, Liu B, Zhang H, Chen W, Zhai J. Single-nucleus nanopore reads processing pipeline. Github. https://github.com/ZhaiLab-SUSTech/snuupy/tree/master (2021). Accessed 26 Jan 2021.