FAOSTAT database. FAO Rome, Italy. 2019. Available from: http://www.fao.org/faostat/en/#home. [cited Apr 2019]
Bennett CE, Thomas R, Williams M, Zalasiewicz J, Edgeworth M, Miller H, et al. The broiler chicken as a signal of a human reconfigured biosphere. R Soc Open Sci. 2018;5:11.
Google Scholar
Meat and seafood production & consumption. 2017. Available from: https://ourworldindata.org/meat-and-seafood-production-consumption. [cited Apr 2019]
OECD Food Agriculture Organization of the United Nations. Meat. OECD-FAO agricultural outlook 2016-2025. Paris: OECD Publishing; 2016.
Google Scholar
Prall GFW, van der Steen HAM, Plastow GS. Application of genomics to the pork industry. J Animal Sci. 2005;83:E1–8.
Google Scholar
Gill M, Smith P, Wilkinson JM. Mitigating climate change: the role of domestic livestock. Animal. 2010;4:323–33.
CAS
PubMed
Google Scholar
Kabir SML. The role of probiotics in the poultry industry. Int J Mol Sci. 2009;10:3531–46.
CAS
Google Scholar
Clavijo V, Florez MJV. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review. Poult Sci. 2018;97:1006–21.
CAS
PubMed
Google Scholar
Crhanova M, Hradecka H, Faldynova M, Matulova M, Havlickova H, Sisak F, et al. Immune response of chicken gut to natural colonization by gut microflora and to Salmonella enterica Serovar Enteritidis infection. Infect Immun. 2011;79:2755–63.
CAS
PubMed
PubMed Central
Google Scholar
Jozefiak D, Rutkowski A, Martin SA. Carbohydrate fermentation in the avian ceca: a review. Anim Feed Sci Technol. 2004;113:1–15.
CAS
Google Scholar
Karasawa Y. Significant role of the nitrogen recycling system through the ceca occurs in protein-depleted chickens. J Exp Zool. 1999;283:418–25.
CAS
PubMed
Google Scholar
Parsons CM, Potter LM, Brown RD. Effects of dietary carbohydrate and of intestinal microflora on excretion of endogenous amino-acids by poultry. Poult Sci. 1983;62:483–9.
CAS
PubMed
Google Scholar
Wen C, Yan W, Sun C, Ji C, Zhou Q, Zhang D, et al. The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. Isme J. 2019;13:1422–36.
CAS
PubMed
PubMed Central
Google Scholar
Mignon-Grasteau S, Narcy A, Rideau N, Chantry-Darmon C, Boscher M-Y, Sellier N, et al. Impact of selection for digestive efficiency on microbiota composition in the chicken. PLoS One. 2015;10:e0135488.
PubMed
PubMed Central
Google Scholar
Stanley D, Denman SE, Hughes RJ, Geier MS, Crowley TM, Chen HL, et al. Intestinal microbiota associated with differential feed conversion efficiency in chickens. Appl Microbiol Biotechnol. 2012;96:1361–9.
CAS
PubMed
Google Scholar
Svihus B, Choct M, Classen HL. Function and nutritional roles of the avian caeca: a review. Worlds Poult Sci J. 2013;69:249–63.
Google Scholar
Watson M. Illuminating the future of DNA sequencing. Genome Biol. 2014;15:2.
Google Scholar
Loman NJ, Watson M. Successful test launch for nanopore sequencing. Nat Methods. 2015;12:303–4.
CAS
PubMed
Google Scholar
Shang Y, Kumar S, Oakley B, Kim WK. Chicken gut microbiota: importance and detection technology. Front Vet Sci. 2018;5:11.
Google Scholar
Medvecky M, Cejkova D, Polansky O, Karasova D, Kubasova T, Cizek A, et al. Whole genome sequencing and function prediction of 133 gut anaerobes isolated from chicken caecum in pure cultures. BMC Genomics. 2018;19:561.
PubMed
PubMed Central
Google Scholar
Crhanova M, Karasova D, Juricova H, Matiasovicova J, Jahodarova E, Kubasova T, et al. Systematic culturomics shows that half of chicken caecal microbiota members can be grown in vitro except for two lineages of Clostridiales and a single lineage of Bacteroidetes; 2019. p. 7.
Google Scholar
Sangwan N, Xia FF, Gilbert JA. Recovering complete and draft population genomes from metagenome datasets. Microbiome. 2016;4:11.
Google Scholar
Kang DWD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:15.
Google Scholar
Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell. 2019;176:649–62.
CAS
PubMed
PubMed Central
Google Scholar
Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568:499–504.
CAS
PubMed
PubMed Central
Google Scholar
Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One. 2014;9:13.
Google Scholar
Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. The genomic and proteomic landscape of the rumen microbiome revealed by comprehensive genome-resolved metagenomics. bioRxiv. 2018: Preprint at doi: https://doi.org/10.1101/489443.
Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun. 2018;9:11.
Google Scholar
Wang W, Hu H, Zijlstra RT, Zheng J, Gänzle MG. Metagenomic reconstructions of gut microbial metabolism in weanling pigs. Microbiome. 2019;7:48.
PubMed
PubMed Central
Google Scholar
Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling genomes from metagenomes: revealing an uncultured class of marine euryarchaeota. Science. 2012;335:587–90.
CAS
PubMed
Google Scholar
Hugerth LW, Larsson J, Alneberg J, Lindh MV, Legrand C, Pinhassi J, et al. Metagenome-assembled genomes uncover a global brackish microbiome. Genome Biol. 2015;16:18.
Google Scholar
Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:11.
Google Scholar
Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.
CAS
PubMed
Google Scholar
Wu SB, Stanley D, Rodgers N, Swick RA, Moore RJ. Two necrotic enteritis predisposing factors, dietary fishmeal and Eimeria infection, induce large changes in the caecal microbiota of broiler chickens. Vet Microbiol. 2014;169:188–97.
PubMed
Google Scholar
Stanley D, Wu SB, Rodgers N, Swick RA, Moore RJ. Differential responses of cecal microbiota to fishmeal, Eimeria and Clostridium perfringens in a necrotic enteritis challenge model in chickens. PLoS One. 2014;9:10.
PubMed Central
Google Scholar
Munk P, Knudsen BE, Lukjancenko O, Duarte ASR, Van Gompel L, Luiken REC, et al. Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat Microbiol. 2018;3:898–908.
CAS
PubMed
Google Scholar
Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome- assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.
CAS
PubMed
PubMed Central
Google Scholar
van der Wielen P, Rovers G, Scheepens JMA, Biesterveld S. Clostridium lactatifermentans sp nov., a lactate-fermenting anaerobe isolated from the caeca of a chicken. Int J Syst Evol Microbiol. 2002;52:921–5.
PubMed
Google Scholar
Boerlin P, Nicholson V, Brash M, Slavic D, Boyen F, Sanei B, et al. Diversity of Enterococcus cecorum from chickens. Vet Microbiol. 2012;157:405–11.
PubMed
Google Scholar
Awad WA, Mann E, Dzieciol M, Hess C, Schmitz-Esser S, Wagner M, et al. Age-related differences in the luminal and mucosa-associated gut microbiome of broiler chickens and shifts associated with Campylobacter jejuni infection. Front Cell Infect Microbiol. 2016;6.
Yu H, Si W, Gong J, Forster RJ, Yang C, Huang R, et al. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol Ecol. 2007;59:147–57.
PubMed
Google Scholar
Duggett NA, Kay GL, Sergeant MJ, Bedford M, Constantinidou CI, Penn CW, et al. Draft genome sequences of six novel bacterial isolates from chicken ceca. Genome Announc. 2016;4:e00448–16.
PubMed
PubMed Central
Google Scholar
Stanley J, Linton D, Burnens AP, Dewhirst FE, On SLW, Porter A, et al. Helicobacter pullorum sp nov - genotype and phenotype of a new species isolated from poultry and from human patients with gastroenteritis Microbiol-UK, vol. 140; 1994. p. 3441–9.
Google Scholar
Lu J, Idris U, Harmon B, Hofacre C, Maurer JJ, Lee MD. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl Environ Microbiol. 2003;69:6816.
CAS
PubMed
PubMed Central
Google Scholar
Neal-McKinney JM, Lu X, Duong T, Larson CL, Call DR, Shah DH, et al. Production of organic acids by probiotic Lactobacilli can be used to reduce pathogen load in poultry. PLoS One. 2012;7:e43928.
CAS
PubMed
PubMed Central
Google Scholar
Beasley SS, Takala TM, Reunanen J, Apajalahti J, Saris PEJ. Characterization and electrotransformation of Lactobacillus crispatus isolated from chicken crop and intestine. Poult Sci. 2004;83:45–8.
CAS
PubMed
Google Scholar
Fujisawa T, Benno Y, Yaeshima T, Mitsuoka T. Taxonomic study of the lactobacillus-acidophilus group, with recognition of lactobacillus-gallinarum sp-nov and lactobacillus-johnsonii sp-nov and synonymy of lactobacillus-acidophilus group-a3 (Johnson et-al 1980) with the type strain of lactobacillus-amylovorus (Nakamura 1981). Int J Syst Bacteriol. 1992;42:487–91.
CAS
PubMed
Google Scholar
Taheri HR, Moravej H, Tabandeh F, Zaghari M, Shivazad M. Efficacy of combined or single use of Lactobacillus crispatus LT116 and L. johnsonii LT171 on broiler performance. Br Poult Sci. 2010;51:580–5.
CAS
PubMed
Google Scholar
Bjerrum L, Engberg RM, Leser TD, Jensen BB, Finster K, Pedersen K. Microbial community composition of the ileum and cecum of broiler chickens as revealed by molecular and culture-based techniques. Poult Sci. 2006;85:1151–64.
CAS
PubMed
Google Scholar
Dec M, Nowaczek A, Urban-Chmiel R, Stepien-Pysniak D, Wernicki A. Probiotic potential of Lactobacillus isolates of chicken origin with anti-Campylobacter activity. J Vet Med Sci. 2018;80:1195–203.
CAS
PubMed
PubMed Central
Google Scholar
Yu B, Liu JR, Hsiao FS, Chiou PWS. Evaluation of Lactobacillus reuteri Pg4 strain expressing heterologous β-glucanase as a probiotic in poultry diets based on barley. Anim Nutr Feed Techn. 2008;141:82–91.
CAS
Google Scholar
Saint-Cyr MJ, Haddad N, Taminiau B, Poezevara T, Quesne S, Amelot M, et al. Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int J Food Microbiol. 2017;247:9–17.
PubMed
Google Scholar
Zanoni RG, Rossi M, Giacomucci D, Sanguinetti V, Manfreda G. Occurrence and antibiotic susceptibility of Helicobacter pullorum from broiler chickens and commercial laying hens in Italy. Int J Food Microbiol. 2007;116:168–73.
CAS
PubMed
Google Scholar
Ceelen LM, Decostere A, Van den Buick K, On SLW, Baele M, Ducatelle R, et al. Helicobacter pullorum in chickens, Belgium. Emerg Infect Dis. 2006;12:263–7.
PubMed
PubMed Central
Google Scholar
Kaakoush NO, Sodhi N, Chenu JW, Cox JM, Riordan SM, Mitchell HM. The interplay between Campylobacter and Helicobacter species and other gastrointestinal microbiota of commercial broiler chickens. Gut Pathogens. 2014;6:10.
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009;37:D233–D8.
CAS
PubMed
Google Scholar
Luo CW, Rodriguez LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res. 2014;42:12.
Google Scholar
Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY. Phylogenomic analysis of the gammaproteobacterial methanotrophs (order Methylococcales) calls for the reclassification of members at the genus and species levels. Front Microbiol. 2018;9:17.
Google Scholar
Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol. 2005;187:6258–64.
CAS
PubMed
PubMed Central
Google Scholar
Cruz-Morales P, Orellana CA, Moutafis G, Moonen G, Rincon G, Nielsen LK, et al. Revisiting the evolution and taxonomy of Clostridia, a phylogenomic update. Genome Biol Evol. 2019;Epub ahead of print: evz096.
Coil DA, Jospin G, Darling AE, Wallis C, Davis IJ, Harris S, et al. Genomes from bacteria associated with the canine oral cavity: a test case for automated genome-based taxonomic assignment. PLoS One. 2019;14:9.
Google Scholar
Ballou AL, Ali RA, Mendoza MA, Ellis JC, Hassan HM, Croom WJ, et al. Development of the chick microbiome: how early exposure influences future microbial diversity. Front Vet Sci. 2016;3:12.
Google Scholar
Oakley BB, Buhr RJ, Ritz CW, Kiepper BH, Berrang ME, Seal BS, et al. Successional changes in the chicken cecal microbiome during 42 days of growth are independent of organic acid feed additives. BMC Vet Res. 2014;10:8.
Google Scholar
Sekelja M, Rud I, Knutsen SH, Denstadli V, Westereng B, Naes T, et al. Abrupt temporal fluctuations in the chicken fecal microbiota are explained by its gastrointestinal origin. Appl Environ Microbiol. 2012;78:2941–8.
CAS
PubMed
PubMed Central
Google Scholar
Stanley D, Geier MS, Denman SE, Haring VR, Crowley TM, Hughes RJ, et al. Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Vet Microbiol. 2013;164:85–92.
PubMed
Google Scholar
Wei S, Morrison M, Yu Z. Bacterial census of poultry intestinal microbiome. Poult Sci. 2013;92:671–83.
CAS
PubMed
Google Scholar
Hieke ASC, Hubert SM, Athrey G. Circadian disruption and divergent microbiota acquisition under extended photoperiod regimens in chicken. PeerJ. 2019;7:28.
Google Scholar
Kubasova T, Kollarcikova M, Crhanova M, Karasova D, Cejkova D, Sebkova A, et al. Contact with adult hen affects development of caecal microbiota in newly hatched chicks. PLoS One. 2019;14:13.
Google Scholar
Ferrario C, Alessandri G, Mancabelli L, Gering E, Mangifesta M, Milani C, et al. Untangling the cecal microbiota of feral chickens by culturomic and metagenomic analyses. Environ Microbiol. 2017;19:4771–83.
CAS
PubMed
Google Scholar
Stanley D, Geier MS, Hughes RJ, Denman SE, Moore RJ. Highly variable microbiota development in the chicken gastrointestinal tract. PLoS One. 2013;8:7.
Google Scholar
Videnska P, Sedlar K, Lukac M, Faldynova M, Gerzova L, Cejkova D, et al. Succession and replacement of bacterial populations in the caecum of egg laying hens over their whole life. PLoS One. 2014;9:14.
Google Scholar
Mancabelli L, Ferrario C, Milani C, Mangifesta M, Turroni F, Duranti S, et al. Insights into the biodiversity of the gut microbiota of broiler chickens. Environ Microbiol. 2016;18:4727–38.
CAS
PubMed
Google Scholar
Pandit RJ, Hinsu AT, Patel NV, Koringa PG, Jakhesara SJ, Thakkar JR, et al. Microbial diversity and community composition of caecal microbiota in commercial and indigenous Indian chickens determined using 16s rDNA amplicon sequencing. Microbiome. 2018;6:13.
Google Scholar
Ding JM, Zhao LL, Wang LF, Zhao WJ, Zhai ZX, Leng L, et al. Divergent selection-induced obesity alters the composition and functional pathways of chicken gut microbiota. Genet Sel Evol. 2016;48:9.
Google Scholar
Ocejo M, Oporto B, Hurtado A. 16S rRNA amplicon sequencing characterization of caecal microbiome composition of broilers and free-range slow-growing chickens throughout their productive lifespan. Sci Rep. 2019;9:14.
Google Scholar
Jebava I, Chuat V, Lortal S, Valence F. Peptidoglycan hydrolases as species-specific markers to differentiate Lactobacillus helveticus from Lactobacillus gallinarum and other closely related homofermentative Lactobacilli. Curr Microbiol. 2014;68:551–7.
CAS
PubMed
Google Scholar
Saminathan M, Sieo CC, Kalavathy R, Abdullah N, Ho YW. Effect of prebiotic oligosaccharides on growth of Lactobacillus strains used as a probiotic for chickens. Afr J Microbiol Res. 2011;5:57–64.
Google Scholar
Askelson TE, Campasino A, Lee JT, Duong T. Evaluation of phytate-degrading Lactobacillus culture administration to broiler chickens. Appl Environ Microbiol. 2014;80:943–50.
PubMed
PubMed Central
Google Scholar
Manfreda G, Parisi A, Lucchi A, Zanoni RG, De Cesare A. Prevalence of Helicobacter pullorum in conventional, organic, and free-range broilers and typing of isolates. Appl Environ Microbiol. 2011;77:479–84.
CAS
PubMed
Google Scholar
Eeckhaut V, Van Immerseel F, Croubels S, De Baere S, Haesebrouck F, Ducatelle R, et al. Butyrate production in phylogenetically diverse Firmicutes isolated from the chicken caecum. Microb Biotechnol. 2011;4:503–12.
CAS
PubMed
PubMed Central
Google Scholar
Polansky O, Sekelova Z, Faldynova M, Sebkova A, Sisak F, Rychlik I. Important metabolic pathways and biological processes expressed by chicken cecal microbiota. Appl Environ Microbiol. 2016;82:1569–76.
CAS
PubMed Central
Google Scholar
Glendinning L, Wright S, Pollock J, Tennant P, Collie D, McLachlan G. Variability of the sheep lung microbiota. Appl Environ Microbiol. 2016;82:3225–38.
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
CAS
PubMed
PubMed Central
Google Scholar
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:12.
Google Scholar
Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.
CAS
PubMed
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013: Preprint at https://arxiv.org/abs/1303.3997. Accessed 22 Feb 2019.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
PubMed
PubMed Central
Google Scholar
Li DH, Liu CM, Luo RB, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
CAS
PubMed
Google Scholar
Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. Isme J. 2017;11:2864–8.
CAS
PubMed
PubMed Central
Google Scholar
Parks D. CompareM. https://github.com/dparks1134/CompareM. Accessed 14 June 2019.
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
CAS
PubMed
PubMed Central
Google Scholar
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
CAS
PubMed
Google Scholar
Stewart RD, Auffret MD, Snelling TJ, Roehe R, Watson M. MAGpy: A reproducible pipeline for the downstream analysis of metagenome-assembled genomes (MAGs). Bioinformatics. 2018;35:bty905.
Rambaut A. FigTree v1. 4. https://github.com/rambaut/figtree. Accessed 22 Feb 2019.
Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ. 2015;3:17.
Google Scholar
Parker CT, Tindall BJ, Garrity GM. International code of nomenclature of prokaryotes: prokaryotic code (2008 revision). Int J Syst Evol Microbiol. 2019;69:S7–S111.
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
CAS
PubMed
Google Scholar
Team RC. R: A language and environment for statistical computing. http://www.R-project.org/. Accessed 22 Feb 2019.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package. https://CRAN.R-project.org/package=vegan. Accessed 22 Feb 2019.
Wickham H. ggplot2: elegant graphics for data analysis. https://ggplot2.tidyverse.org/. Accessed 22 Feb 2019.
Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:552.
Google Scholar
Glendinning L, Stewart RD, Pallen MJ, Watson KA, Watson M: Metagenomics of chicken cecal contents. PRJEB33338. Eur Nucleotide Arch. https://www.ebi.ac.uk/ena/data/view/PRJEB33338. 2019.