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Abstract

Background: Chickens are a highly important source of protein for a large proportion of the human population.
The caecal microbiota plays a crucial role in chicken nutrition through the production of short-chain fatty acids,
nitrogen recycling, and amino acid production. In this study, we sequence DNA from caecal content samples taken
from 24 chickens belonging to either a fast or a slower growing breed consuming either a vegetable-only diet or a
diet containing fish meal.

Results: We utilise 1.6 T of Illumina data to construct 469 draft metagenome-assembled bacterial genomes, including
460 novel strains, 283 novel species, and 42 novel genera. We compare our genomes to data from 9 European Union
countries and show that these genomes are abundant within European chicken flocks. We also compare the
abundance of our genomes, and the carbohydrate active enzymes they produce, between our chicken groups and
demonstrate that there are both breed- and diet-specific microbiomes, as well as an overlapping core microbiome.

Conclusions: This data will form the basis for future studies examining the composition and function of the chicken
caecal microbiota.
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Background
There are an estimated 23 billion live chickens on the
planet at any one time [1], outnumbering humans by
over 3:1. As most of these are reared for food, the actual
number of chickens produced per year is even higher, at
almost 65 billion, leading some to speculate that the
accumulation of chicken bones in the fossil record will
be used by future archaeologists as a unique marker for
the Anthropocene [2].
Since the 1960s, worldwide chicken meat production

has increased by over ten times [3]. Global meat produc-
tion is predicted to be 16% higher in 2025 vs. 2015, with
most of this increase originating from poultry meat pro-
duction [4]. Part of the popularity of chicken meat is
that due to intensive selection, chickens have been de-
veloped which are highly productive in terms of their
growth rate with efficient feed conversion ratios (the rate
at which chickens convert feed into muscle), decreasing
from 3.0 in the 1960s to 1.7 in 2005 [5], making them a

cheap source of protein in comparison to other live-
stock. Another reason for their popularity is a lack of
religious dietary restrictions related to their consump-
tion, in comparison to pork or beef. Chickens also
produce less greenhouse gases per kilogramme of
meat than pigs, cattle, and sheep [6]. The potential to
manipulate the microbiota in chickens to gain further
increases in productivity is of great commercial and
scientific interest, leading to the use of probiotics
across the poultry industry [7].
As well as playing an important role in pathogen pro-

tection [8] and immune system development [9], the
microbiota of the chicken also plays a crucial nutritional
role. The largest concentration of microbial cells in the
chicken gastrointestinal tract can be found in the caeca,
and thereby, the majority of chicken microbiota studies
focus primarily on these microbial communities. Members
of the caecal microbiota are able to produce short-chain
fatty acids (SCFAs) such as acetate, butyrate, lactate, and
propionate, mostly from carbohydrate sources which have
passed through the small intestine; these SCFAs are then
able to be absorbed by the bird and used as an energy
source [10]. Members of the chicken caecal microbiota
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have also been implicated in the recycling of nitrogen by
the degradation of nitrogenous compounds [11] and the
synthesis of amino acids [12]. One study demonstrated
that 21% of the variation in chicken abdominal fat mass
could be attributed to the caecal microbiota composition,
when controlling for host genetic effects [13]. Differences
have also been observed between birds with high and low
feed efficiency [14, 15]. However, despite extensive re-
search over many decades, the quantitative importance of
the caeca in chicken nutrition remains unclear [16], and
relatively few microbes commensal in the chicken gut
have been sequenced and deposited in public repositories.
The emergence of cheaper DNA sequencing technolo-

gies [17, 18] has led to an explosion in studies which
have sought to characterise the chicken gastrointestinal
microbiota, particularly using 16S rRNA gene-based
methods. Using this methodology, it has been found that
the chicken caecal microbiota in the first few weeks of
life is predominantly colonised by members of the Firmi-
cutes, mostly of the order Clostridiales [8, 19]. While
valuable, marker-gene studies do not enable an in-depth
functional and genomic characterisation of the micro-
biome. Some microbes from the chicken caeca have
been successfully cultured and sequenced, including 133
gut anaerobe strains representing a few dozen species
with a wide range of metabolic potentials [20] and 42%
of the gut microbiota members of 34–40-week-old layers
[21]; however, it is highly unlikely that these microbes
represent the entire diversity of the chicken caecal
microbiota, due to the difficulty in culturing many
anaerobic gut microorganisms. One method which
avoids this issue of culturability is the construction of
metagenome-assembled genomes (MAGs). Due to im-
provements in computational power and sequencing
technologies, and the development of new computa-
tional approaches [22, 23], it is now possible to ac-
curately bin short-read metagenomic data into high-
quality genomes. Using this technique, thousands of
MAGs have been generated from various environ-
ments, including humans [24, 25], chickens [26], the
rumen [27, 28], pig faeces [29], marine surface waters
[30, 31], an underground aquifer system [32], and
other public datasets [33].
In this study, we sought to use metagenomic sequen-

cing, assembly and binning to investigate the chicken
caecal microbiota. In order to maximise diversity, we
chose two commercial bird genotypes with different
growth phenotypes, fed with two different diets. This
also allowed us to look at the effects of breed and diet
on strain-level microbial abundance. The lines chosen
for the study were Ross 308, a fast growing broiler breed,
and the Ranger Classic, a slower growing broiler aimed
at free-range, organic farms. All birds were fed either a
vegetable-only diet or a diet based on fish meal as the

protein source. The inclusion of fish meal in chicken di-
ets has previously been linked to changes in the caecal
microbiota and is correlated with an increased risk of
necrotic enteritis [34, 35]. We assembled 460 novel mi-
crobial strains, predicted to represent 283 novel micro-
bial species and 42 novel microbial genera from the
chicken microbiome, and went on to demonstrate both
a breed- and diet-specific microbiota. We also demon-
strated that our microbial genomes are abundant within
European chicken flocks and represented the majority of
reads from nine farms, which were part of a pan-EU
study examining antimicrobial resistance (AMR) in
broilers [36]. While we show that large numbers of
strains are shared between our birds, it is their relative
abundance that largely drives breed and diet effects. This
is the first large-scale binning of the chicken caecal
microbiota, and we believe these data will form the basis
for future studies of the structure and function of the
chicken gut microbiome.

Results
Assembly of 469 draft microbial genomes from chicken
caeca
We produced 1.6 T of Illumina data from 24 chicken
samples and carried out a metagenomic assembly of
single samples and also a co-assembly of all samples.
On average, 98.4% (standard deviation (SD) = 0.289%)
of our reads originated from bacteria, 1.2% (SD = 0.25%)
originated from Eukaryota, 0.12% (SD = 0.093%) originated
from viruses, and 0.31% (SD = 0.046%) originated from Ar-
chaea. A total of 4524 metagenomic bins were created from
the single-sample binning, and 576 more were created from
co-assembly binning. By performing co-assemblies, we are
able to construct bins which would have been too low in
coverage to be identified by single-sample binning. We
were left with a total of 469 dereplicated genomes (99%
ANI) with estimated completeness of ≥ 80% and estimated
contamination ≤ 10% (Additional file 1: Figure S1), 377 of
which originated from the single-sample binning and 92
from the co-assembly. Of these, 349 had completeness >
90% and contamination < 5% (high-quality draft genomes
as defined by Bowers et al. [37]), 210 were > 95% complete
with < 5% contamination, and 47 MAGs were > 97%
complete with 0% contamination. The distribution of these
MAGs (based on coverage) between the 24 samples can be
found in Additional file 2. After dereplication to 95% ANI,
335 MAGs remained, representing species identified in our
samples. Our dataset therefore contains 469 microbial
strains from 335 species. Two hundred eighty-three of
these species and 460 of these strains were novel when
compared to public databases (Additional file 3).
Additional file 3 contains the NCBI taxonomic assign-

ment for each MAG along with the assembly characteristics
and GTDB-Tk taxonomic assignments. Additional file 4
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contains the comparative genomics information produced
by MAGpy. Figure 1 shows a phylogenetic tree of the
MAGs. This was used to manually correct any errors in
taxonomic identification. By, far the most dominant
phylum was Firmicutes_A (n = 399), followed by Firmicutes
(n = 51), Actinobacteriota (n = 10), Proteobacteria (n = 3:
all Escherichia coli), Verrucomicrobiota (n = 2: genera
UBA11493 and CAG-312), Bacteroidota (n = 1: Alistipes
sp. CHKCI003), Campylobacterota (n = 1: Helicobacter_
D pullorum), Cyanobacteriota (n = 1: order Gastranaer-
ophilales), and Desulfobacterota (n = 1: genus Mail-
hella). All members of Firmicutes_A belonged to the
class Clostridia, which included the orders Oscillospir-
ales (n = 179), Lachnospirales (n = 134), 4C28d-15 (n =
42), Christensenellales (n = 17), TANB77 (n = 10), Pep-
tostreptococcales (n = 9), CAG-41 (n = 5), Clostridiales
(n = 1), UBA1212 (n = 1), and one MAG which was un-
defined at order level (CMAG_333). All members of
Firmicutes belonged to the class Bacilli; this included
the orders Lactobacillales (n = 21), RF39 (n = 20), Erysi-
pelotrichales (n = 8), Exiguobacterales (n = 1), and
RFN20 (n = 1). The Actinobacteriota were divided into
two classes, Actinobacteria (n = 5) and Coriobacteriia

(n = 5: containing only the order Coriobacteriales). The
Actinobacteria class contained two orders: Actinomycet-
ales (n = 4) and Corynebacteriales (n = 1). Ninety-seven
MAGs were identified to species, 246 identified to
genus, 115 identified to family, 10 identified to order,
and 1 identified to class. No MAGs were identified as
Archaea.
Of the MAGs that show greater than 95% ANI (aver-

age nucleotide identity) with an existing sequenced gen-
ome, several of these genomes have previously been
identified in chickens. Our MAGs include 6 novel strains
of Anaeromassilibacillus sp. An250 [20], a novel strain
of Anaerotignum lactatifermentans [38], a novel strain of
Blautia sp. An81 [20], 3 novel strains of Drancourtella
sp. An57 [20], a novel strain of Enterococcus cecorum
[39], 2 novel strains of E.coli [14, 40, 41], 3 novel strains
of Eubacteriaceae bacterium CHKCI004 [42], a novel
strain of Eubacterium sp. An11 [20], 2 novel strains of
Faecalibacterium spp. [20, 33], 7 novel strains of Flavo-
nifactor spp. [20], 3 novel strains of Gordonibacter spp.
[20], 1 novel strain of Helicobacter pullorum [43], 15
novel strains of Lachnoclostridium spp. [20], 6 novel
strains of Lachnospiraceae bacterium UBA1818 [33], 2

Fig. 1 Phylogenetic tree of the 469 draft microbial genomes from the chicken caeca, labelled by taxonomic order, as defined by GTDB-Tk. Draft
genomes labelled as “undefined” were only able to be assigned taxonomy at a higher level than order
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novel strains of Massiliomicrobiota sp. An134 [20], and
5 novel strains of Pseudoflavonifractor sp. An184 [20].
We also identified several Lactobacilli which have pre-

viously been isolated from the chicken gastrointestinal
tract and have been suggested as potential probiotics in
chickens, including 5 novel strains of Lactobacillus
crispatus [44–46], 2 novel strains of Lactobacillus
gallinarum [47], a novel strain of Lactobacillus johnsonii
[48, 49], a novel strain of Lactobacillus oris [50], a novel
strain of Lactobacillus reuteri [41, 44, 51], and a novel
strain of Lactobacillus salivarius [41, 49, 52].
Our MAGs represent several putative novel species

from 7 taxonomic classes: including 25 species of Bacilli,
252 species of Clostridia, 2 species of Coriobacteriia, 1
species of Desulfovibrionia, 1 species of Lentisphaeria, 1
species of Vampirovibrionia, and 1 species of Verrucomi-
crobiae. These include 5 novel species of Lactobacillus.
Our MAGs also contain 42 putative novel genera which
contain 69 of our MAGs. We defined a genus as novel if
all MAGs which clustered at 60% AAI (average amino
acid identity) were not assigned a genus by GTDB-Tk
(Additional file 5). Forty of these novel genera belong to
the class Clostridia, with over half belonging to the order
Oscillospirales (which contains the family Ruminococca-
ceae). One of the remaining novel genera contains
one MAG which belongs to the Bacilli class (order
Exiguobacterales) while the remaining genus belongs
to the Cyanobacteriota (Melainibacteria), within the
order Gastranaerophilales. Our proposed names for
these genera and the species they contain can also be
found in Additional file 5, alongside descriptions of
their derivations. GTDB-Tk was unable to assign tax-
onomy to either of these genera at lower than order
level, indicating that they may belong to novel bacter-
ial families. It should also be noted that several
genus-level MAG clusters do not contain any MAGs
which were assigned a valid NCBI genus label but in-
stead only received names defined by GTDB-Tk. For
example, group 16 (Additional file 5) is entirely con-
stituted by MAGs of the genus UBA7102.

Newly constructed MAGs are abundant in chicken
populations across Europe
In order to assess the abundance of our MAGs in other
chicken populations, we compared sequence reads
generated from 179 chicken faecal, pooled, herd-level
samples, collected from 9 different countries across the
European Union [36], to the 469 MAGs generated as
part of this study. The read mapping rates can be seen
in Fig. 2. Over 50% of the reads mapped to the MAGs in
all samples; in 8 out of 9 countries, the average read
mapping rate was above 70%, and in Italy, the average
read mapping rate was above 60%.

This demonstrates that our MAGs are representa-
tive of the broiler gut microbiome in populations
throughout the EU, and account for the majority of
reads in all cases. The abundance of the MAGs across
the 179 samples can be seen in Fig. 3. While there is
clear structure in the data, samples do not appear to
cluster by country, and the observed similarities may
be explained by other factors not available, such as
breed, age, or diet.

Presence of a core broiler caecal microbiota
A total of 125 MAGs were found to be present in at
least 1× coverage in all of our samples, and 4 of these
MAGs were found to be ≥ ×10 in all of our samples:
Alistipes sp. CHKCI003 CMAG_6, uncultured Bifido-
bacterium sp. CMAG_55, uncultured Bifidobacterium
sp. CMAG_59, and Firmicutes bacterium CAG_94
CMAG_438. Only one MAG was found to be
uniquely present in only one sample at ≥ 1× coverage:
uncultured Clostridia sp. CMAG_391 in chicken 16
(Ross 308: vegetable diet). The distribution of MAGs
between groups can be seen in Fig. 4. Two hundred
seventy-six MAGs were on average present in at least
1× coverage in all groups and could therefore be de-
scribed as a core microbiota shared amongst the
chickens in our study.

Differences in caecal MAGs based on chicken line and
diet
When comparing samples based on the coverage of
MAGs, significant clustering of samples by group
can be observed when comparing all groups (PER-
MANOVA (permutational multivariate analysis of
variance), P < 0.001), between chicken lines (all sam-
ples: PERMANOVA, P < 0.001; within vegetable diet:
PERMANOVA, P = 0.015; within fish meal diet: PER-
MANOVA, P = 0.0082) (Fig. 5) and between diets (all
samples: PERMANOVA, P = 0.008; within Ross 308
line: PERMANOVA, P = 0.018; within Ranger Classic
line: PERMANOVA, P = 0.0043) (Fig. 5). A significant
interaction was also observed between line and diet
(Line × Diet PERMANOVA: P = 0.038). Gender and
DNA extraction batch were not found to have sig-
nificantly affected the abundance of MAGs (PERMA-
NOVA: P > 0.05).
MAGs which were significantly more abundant by

coverage between groups were identified by DESeq2
(Fig. 6); a full list of these MAGs can be found in Add-
itional file 6. In Ross 308 birds, 43 MAGs were found to
be differentially abundant between the 2 diets, while in
Ranger Classic birds, 45 MAGs were found to be differ-
entially abundant. Several MAGs were found to be dif-
ferentially abundant between the 2 lines when birds
were consuming a vegetable diet (61 MAGs) or a fish
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Fig. 2 Read mapping rates of 179 chicken faecal samples, from 9 EU countries, against a database of the 469 MAGs

Fig. 3 Abundance of 469 MAGs in 179 pooled chicken faecal samples from 9 countries in the EU. Blue is low abundance, white medium, and red
high abundance. Data are scaled within row
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meal diet (69 MAGs). Ninety-eight MAGs were found
to be differentially abundant between lines when con-
trolling for diet, and 64 MAGs were found to be dif-
ferentially abundant between diets when controlling
for line.
No MAGs were found to be significantly more

abundant in both Ross 308 and Ranger Classic birds
fed a fish meal diet, while four MAGs were found to
be significantly more abundant in both Ross 308 and

Ranger Classic birds fed a solely vegetable diet: un-
cultured Lachnospiraceae sp. CMAG_102, Lachno-
clostridium sp. An76 CMAG_121, Faecalibacterium
sp. An121 CMAG_31, and uncultured Clostridia sp.
CMAG_357.
Eight MAGs were found to be significantly more

abundant in Ross 308 chickens on both diets: uncultured
Pseudoflavonifractor sp. CMAG_226, uncultured Oscil-
lospiraceae sp. CMAG_257, uncultured Clostridia sp.

Fig. 4 UpSet graphs showing the number of shared MAGs at a average 1× coverage and b average 10× coverage in the four chicken groups
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CMAG_273 and uncultured Clostridia sp. CMAG_331,
Clostridia sp. CMAG_194, Lactobacillus gallinarum
CMAG_28, uncultured Faecalibacterium sp. CMAG_33,
and Lactobacillus gallinarum CMAG_35. In contrast,
only one MAG was found to be consistently more abun-
dant in Ranger Classic birds on both diets (uncultured
Lachnospiraceae sp. CMAG_229).
Lactobacilli are of particular interest to probiotic

manufacturers. We found that both MAGs identified
as L. gallinarum were more abundant in Ross 308
birds when controlling for diet, and four of the five
MAGs identified as L. crispatus were more abundant
in birds fed a diet with fish meal when controlling
for chicken line.
One notable observation is the high amount of

Helicobacter pullorum observed in the Ross 308: vege-
table diet group. While H. pullorum is often thought
of as a pathogen, it has previously been isolated from
the caeca of asymptomatic chickens [43] and carriage
of Helicobacter by chickens is common in commercial
flocks [53–55].

Differences in CAZymes between lines and diets
Carbohydrate active enzymes (CAZymes) are enzymes
involved in the metabolism, synthesis, and binding of
carbohydrates. They are grouped by the CAZy data-
base [56] into the following major groups: the auxil-
iary activities (AAs) class, carbohydrate-binding

modules (CBMs), carbohydrate esterases (CEs), glyco-
side hydrolases (GHs), glycosyltransferases (GTs), and
polysaccharide lyases (PLs). As their names suggest,
CEs are responsible for the hydrolysis of carbohy-
drate esters while CBMs are responsible for binding
carbohydrates. GHs and PLs are both responsible for
cleaving glycosidic bonds, hydrolytically or non-
hydrolytically, respectively, while GTs are able to
catalyse the formation of glycosidic bonds. The AA
class are not themselves CAZymes but instead act in
conjunction with them as redox enzymes. We com-
pared the predicted proteins from our MAGs with
the CAZy database using dbcan with the cut-off E value
< 1e−18 and coverage > 0.35.
When clustering groups by the abundance of MAG-

derived CAZymes, all groups separate visually (Fig. 7)
but only the following differences were significant: Ross
308 birds were shown to cluster significantly by diet
(PERMANOVA, P = 0.021), and birds receiving a fish
meal diet clustered significantly by line (PERMANOVA,
P = 0.0065). A significant interaction was observed be-
tween line and diet (Line × Diet PERMANOVA: P =
0.0051). Using DESeq2, we also found that the abun-
dances of specific CAZymes differed between groups
(Fig. 8), full lists of which can be found in Add-
itional file 7. We found several starch degrading enzymes
to be differentially abundant between lines when con-
trolling for diet, including GH13 subfamily 10, GH15,

Fig. 5 NMDS of chicken caecal samples clustered by proportion of MAGs (Bray-Curtis dissimilarity). a Ross 308 birds clustered by diet
(PERMANOVA: P = 0.018). b Ranger Classic birds clustered by diet (PERMANOVA: P = 0.0043). c Birds on a vegetable diet clustered by line
(PERMANOVA: P = 0.015). d Birds on a fish meal diet clustered by line (PERMANOVA: P = 0.0082)
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Fig. 6 Heatmap showing the proportional coverage of MAGs which were significantly differently abundant between groups (DESeq2, P ≤ 0.05).
Euclidean clustering was used to cluster MAGs and samples
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GH57, GH4, and GH31, and between diets when con-
trolling for line, including GH13, GH13 subfamily 28,
and GH13 subfamily 33. We also found that several
CAZymes involved in metabolising cellulose and hemi-
cellulose were differentially abundant between lines
when controlling for diet, including GH5 (subfamilies
19, 37, 48, 44, 18), CE6, GH43 (subfamilies 30, 19, 29,
12), GH115, CE2, and GH67, and between diets when
controlling for line, including GH5 (subfamilies 7 and
48) and GH43 (subfamilies 33, 4, and 35). Gender and
DNA extraction batch were not found to have signifi-
cantly affected the abundance of CAZymes (PERMA-
NOVA: P > 0.05).

Line and gender impact the weight of the chicken
As we did not monitor individual feed intake, we cannot
comment on the feed-conversion ratio of these birds;
however, when housed and fed as a group, there are
clear statistical differences between the birds in terms of
weight (Additional file 1: Figure S2). Univariate GLMs
with fixed factors of gender, line, and diet were per-
formed, with bird weight as the dependent variable. Both
gender (P < 0.001) and line (P < 0.001) were found to sig-
nificantly impact weight, as expected. Diet was not found
to significantly affect bird weight overall (P = 0.220). We
did observe a significant increase in bird weight in Ran-
ger Classic birds (P = 0.007), of both genders, fed a fish
meal diet, which was not observed in the Ross 308 birds
(P = 0.778).

Discussion
It may be possible to increase chicken productivity by
the manipulation of the chicken caecal microbiota. How-
ever, before this is possible, we need to develop a good
understanding of the types of bacteria present in the
chicken and their nutritional function.
In this study, we constructed 469 metagenome-

assembled genomes from chicken caecal contents,
greatly expanding upon previous chicken caecal MAGs
[26]. Three hundred forty-nine of our MAGs had com-
pleteness > 90% and contamination < 5% and can there-
fore be classed as high-quality draft genomes as defined
by Bowers et al. [37]. Our MAGs include 460 novel
strains and 283 novel species, including 5 novel Lactoba-
cillus species. Ninety-seven MAGs were able to be iden-
tified to species level by GTDB-Tk, and a further 246
could be identified to genus. We also identified 42 novel
bacterial genera, 40 of which belonged to the class Clos-
tridia. The remaining 2 genera belonged to the Bacilli
class and the Gastranaerophilales order of Cyanobacter-
iota, and may also belong to novel taxonomic families.
Our method of defining genera is conservative, as genera
within different taxonomies may cluster at higher AAIs
[57–59]. We used GTDB-Tk instead of NCBI to assign
taxonomies to our MAGs for the following reasons. The
vast majority of our MAGs are members of the Clos-
tridia, whose taxonomies are known to fit poorly with
genomic data [60]. Indeed, when we constructed a
phylogenetic tree of our MAGs using NCBI

Fig. 7 NMDS of chicken caecal samples clustered by abundance of MAG CAZymes (Bray-Curtis dissimilarity). a Ross 308 birds clustered
significantly by diet (PERMANOVA: P = 0.021). b Ranger Classic birds did not cluster significantly by diet (PERMANOVA: P = 0.095). c Birds on a
vegetable diet did not cluster significantly by line (PERMANOVA: P = 0.061). d Birds on a fish meal diet clustered significantly by line
(PERMANOVA: P = 0.0065)
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Fig. 8 Heatmap showing the proportional coverage of MAGs which were significantly differently abundant between groups (DESeq2, P ≤ 0.05).
Euclidean clustering was used to cluster MAGs and samples
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classifications, we found many discrepancies between
the taxonomic assignments and our tree (data not
shown) resulting in the need for many manual correc-
tions. However, using GTDB-Tk, it was only necessary
to manually correct one of our MAGs (CMAG_333)
which was originally classified as a member of the Deha-
lobacteriia but clearly sat within the Clostridia in our
tree. Our experiences reflect those of Coil et al. who
found that the use of GTDB-Tk required less labour and
reduced the need for subjective decisions in taxonomic
assignment [61]. The majority of our MAGs belonged to
the orders Oscillospirales and Lachnospirales, members
of the Clostridia class. The high abundance of Clostridia
observed during our study correlates with several previ-
ous studies examining the chicken caecal microbiota [20,
62–67]. This is likely the product of chicks being raised
in an environment where they are not exposed to a ma-
ternal microbiota as feral hens and chicks exposed to an
adult hen have microbiotas which are far less dominated
by Firmicutes and contain higher abundances of Bacter-
oidetes [68, 69].
Within our dataset, we found 276 microbes which

were on average present at a minimum 1× coverage in
all 4 of our groups, potentially indicating a core micro-
biota across our dataset. However, caution must be
taken as all of our chickens were raised in the same facil-
ity and samples were all taken at the same time point,
which will have limited the variability in microbes
present. Chicken microbiota can vary across flocks [70],
at different times in the bird’s life [71] and between free-
range and intensively-reared chickens [72]. To provide a
truly representative dataset of chicken microbial ge-
nomes, it would be necessary to sequence caecal samples
from birds from multiple lines and raised under a variety
of conditions. However, we do think it is likely that there
is a core broiler caecal microbiota which is shared across
sites and is irrespective of management conditions. Our
comparison to chicken faeces samples from nine coun-
tries which were part of a pan-EU project on AMR dem-
onstrates that our MAGs are abundant in chicken
populations across Europe and that these new genomes
can account for the majority of reads in chicken gut
microbiome studies. We also identified several novel
Lactobacillus strains which have previously been posited
as potential chicken probiotics, including L. crispatus
[44–46], L. gallinarum [47], L. johnsonii [48, 49], L. oris
[50], L. reuteri [41, 44, 51], and L. salivarius [41, 49, 52].
We also compared the abundance of our MAGs and

MAG-derived CAZymes. It should be noted that care
should be taken when generalising our findings, as the
composition of the microbiota can vary significantly be-
tween chicken flocks [70, 73]. When analysing the abun-
dance of MAGs between birds from different lines,
consuming either a vegetable diet or a diet containing fish

meal, we found significant differences in the microbial
communities based on both line and diet. This agrees with
previous studies where significant differences have been
described in the intestinal microbiota of chickens from
different lines, including those from faster and slower
growing lines [73–75]. Differences have also previously
been observed in the microbiota when feeding chickens a
diet supplemented with fish meal [34, 35]. This correlates
with differences observed in the weights of birds fed the
fish meal diet. Ranger Classic birds fed a fish meal diet
weighed significantly more than those fed a vegetable-only
diet, whereas there was no significant difference between
the weight of the Ross 308 birds fed on these two diets.
Examining those bacteria which were consistently sig-

nificantly increased in a specific line regardless of diet or
a specific diet regardless of line, the majority of these
bacteria are novel species; therefore, it is difficult to hy-
pothesise why they are more abundant in particular bird
lines or when birds are fed certain diets. Of those species
that had previously been identified, the two L. galinarum
strains were both consistently found to be more abundant
in Ross 308 birds, while Lachnoclostridium sp. An76
CMAG_121 and Faecalibacterium sp. An121 CMAG_31
were found to be more abundant in birds on the vegetable
diet. L. gallinarum is a homofermentative and thermoto-
lerant [47, 76] species which has previously been sug-
gested as a potential chicken probiotic [45, 77, 78], while
Lachnoclostridium sp. An76 and Faecalibacterium sp.
An121 [20] have only very recently been discovered and
are therefore not well characterised.
We are unsure why H. pullorum was observed in such

high levels in the Ross 308: vegetable diet group. We are
unable to rule out contamination from the environment
as our groups were housed in separate pens within the
same room. We did not observe any negative health ef-
fects in this group, and the bacterium is very common in
some flocks [43, 53–55, 79].
We wondered whether the differences in microbiota

we observed between groups were associated with
changes in the metabolic potential of the caecal micro-
bial communities. Microbes isolated from the chicken
caeca have previously been shown to have highly vari-
able metabolic pathways [80, 81]. We found that the
abundances of certain MAG-derived CAZymes involved
in starch and cellulose degradation were significantly
differently abundant between lines and diets. These
molecules are highly abundant in the predominantly
grain-based diets fed to chicken. However, energy from
starches and celluloses is not available to the chicken
host unless this is first degraded into smaller carbohy-
drates by the gut microbiota; therefore, differences be-
tween the ability of the caecal microbiota to degrade
these molecules may lead to greater efficiency of energy
extraction from feed [65].
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It is also interesting to note that when analysing the
abundance of MAG-derived CAZymes in the chicken
caeca, we only observed significantly separate clustering of
birds by diet in the Ross 308 birds and by line in animals
that were consuming the fish meal diet. This indicates that
the differences in MAG abundances for these groups re-
sulted in significantly different pools of metabolic genes.
However, significant differences in MAG abundances were
also observed for Ranger Classics on the two diets and for
chickens of different lines consuming the vegetable diet,
but this did not result in a significant difference in the total
abundance of CAZymes. This finding serves to highlight
that changes in microbiota community composition do not
necessarily lead to significant changes in the total metabolic
potential of that community, although it is possible more
significant differences would be observed with a larger
sample size. It is worth noting that while our Ross 308
vegetable diet group contained 4 males and 2 females and
the other groups contained 3 males and 3 females, gender
was found to have no impact on the abundance of
CAZymes or MAGs and this therefore should not have
impacted our results.
One outlier was observed in our data: chicken 2 appeared

to cluster separately by the abundance of its MAGs in com-
parison to other Ross 308 birds consuming a fish meal diet,
supporting the idea that while diet and line are associated
with differences in the microbiota, variation will still exist
between birds of the same line consuming similar diets. It
should also be noted that the individual feed intake of each
bird was not measured, meaning that some birds may have
consumed different quantities of food, which could lead to
variation in their microbiota compositions.

Conclusions
Through the construction of metagenome-assembled ge-
nomes, we have greatly increased the quantity of chicken-
derived microbial genomes present in public databases and
our data can be used as a reference dataset in future meta-
genomic studies. While previous studies have demonstrated
that Clostridia are very common in the chicken caeca, our
study shows that within this class, there is a wide diversity
of species present, something which has perhaps been
underestimated by culture-based studies. To gain a mech-
anistic insight into the function of these bacteria and to
capture the wide diversity of bacteria present in chickens,
large-scale culture-based studies will be necessary, and des-
pite the utility of metagenomic studies for constructing mi-
crobial genomes, culturing followed by whole genome
sequencing remains the gold-standard method.

Methods
Study design
Ross 308 (Aviagen, UK) (n = 12) and Ranger Classic
(Aviagen, UK) (n = 12) chickens were hatched and

housed at the National Avian Research Facility in Edin-
burgh (UK). Birds were fed either a vegetable only diet
or a diet supplemented with fish meal (Additional file 1:
Table S1) (diet formulation: Additional file 1: Table S2
and S3, nutritional info: Additional file 1: Table S4).
Birds received Mareks-Rispins vaccinations (Merial,
France) at 1–2 days of age and were housed by group in
separate floor pens (within the same room) with wood
shaving bedding, and received food and water ad libitum.
Stocking densities were based on UK Home Office
Animals (Scientific Procedures) Act 1986, resulting in a
floor area per bird of 0.133 m2 at 5 weeks of age. Birds
were euthanized by cervical dislocation at 5 weeks of
age, and caecal content samples were collected. Contents
from both caeca were pooled to make one sample per
bird. Samples were stored at 4 °C for a maximum of 24 h
until DNA extraction, except for those from DNA ex-
traction batch 2 which were frozen at − 20 °C for 9 days
prior to DNA extraction (Additional file 1: Table S5).
DNA extraction was performed as described previously
using the DNeasy PowerLyzer PowerSoil Kit (Qiagen,
UK) [82]. Shotgun sequencing was performed on a
NovaSeq (Illumina) producing 150 bp paired-end reads.

Bioinformatics
Assembly and binning were carried out as previously de-
scribed [27, 28]. Illumina adaptors were removed using
trimmomatic [83]. Taxonomies were assigned to paired
sequence reads with Kraken [84] using a Kraken data-
base consisting of RefSeq complete genomes. Single-
sample assemblies were performed using IDBA-UD [85]
with the options --num_threads 16 --pre_correction
--min_contig 300. BWA MEM [86] was used to separ-
ately map reads from every sample back to every assem-
bly. On average, 98.84% (SD = 0.0028%) of reads from
the same sample mapped to their assembly. SAMtools
[87] was used to create BAM files, and the command
jgi_summarize_bam_contig_depths was run on all BAM
files for each assembly to calculate coverage. A coassem-
bly was also carried out on all 24 samples using MEGA-
HIT (options: --continue --kmin-1pass -m 100e+10 --k-
list 27,37,47,57,67,77,87 --min-contig-len 1000 -t 16)
[88]. Contigs were filtered to a minimum length of 2 kb,
then indexed and mapped as for single assemblies. On
average, 86.58% (SD = 0.0086%) of sample reads mapped
to the coassembly.
METABAT2 [23] was used on both single-sample as-

semblies and co-assemblies to carry out metagenomic
binning, taking into account coverage values and with
the options --minContigLength 2000, --minContigDepth
2. All bins were dereplicated using dRep [89] with the
options dereplicate_wf -p 16 -comp 80 -con 10 -str 100
-strW. Bins were dereplicated at 99% average nucleotide
identity (ANI), resulting in each MAG being taxonomically
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equivalent to a microbial strain. On average, 78.43% (SD =
0.022%) of sample reads mapped to these MAGs. Bins were
also dereplicated at 95% ANI to calculate the number of
species represented within our MAGs. CompareM was
used to calculate average amino acid identity (AAI) [90].
The completeness and contamination of all bins were

assessed using CheckM [91] with the options lineage_wf,
-t 16, -x fa and filtering for completeness ≥ 80% and con-
tamination ≤ 10%. GTDB-Tk [92] was used to assign
taxonomy to MAGs, except for CMAG_333 which upon
visual inspection of taxonomic trees was identified more
accurately as Clostridia. For submission of our MAGs to
NCBI, MAGs were named based on the following rule: if
the lowest taxonomy assigned by GTDB-Tk did not
correlate with an NCBI classification at the correct taxo-
nomic level, then MAGs were named after the lowest
taxonomic level at which NCBI and GTDB-Tk matched.
Comparative genomics between the MAGs and public
datasets was carried out using MAGpy [93]. The taxo-
nomic tree produced by MAGpy was re-rooted manually
using Figtree [94] at the branch between Firmicutes and
the other bacterial phyla, and subsequently visualised
using Graphlan [95]. The novelty of genomes in com-
parison to those present in public databases was also
determined. Genomes were defined as novel strains if
the ANI output by GTDB-Tk was < 99%. Genomes were
determined as novel species if the ANI output by
GTDB-Tk was < 95%, or if an ANI was not output by
GTDB-Tk, then the average protein similarity output by
MAGpy was < 95%. Genera were defined as novel if all
MAGs which clustered at 60% AAI [57] were not
assigned a genus by GTDB-Tk. Proposed names for new
genera and species belonging to these genera were for-
mulated based on the International Code of Nomencla-
ture of Prokaryotes [96]. To assess the abundance of our
MAGs in other chicken populations, reads from Munk
et al. [36] were downloaded from the European Nucleo-
tide Archive (accession number: PRJEB22062), trimmed
using cutadapt [97], aligned to the MAG database using
BWA MEM, and processed using SAMtools.
Carbohydrate active enzymes (CAZymes) were identi-

fied by comparing MAG proteins to the CAZy database
[56] using dbcan2 (version 7, 24 August 2018). The
abundance of CAZyme groups was then calculated as
the sum of reads mapping to MAG proteins within each
group after using DIAMOND [98] to align reads to the
MAG proteins.

Statistics and graphs
Univariate general linear models (GLMs) were performed
in SPSS Statistics 21 (IBM) with gender, line, and diet as
fixed factors. All other statistical analyses were carried out
in R [99] (version 3.5.1.). NMDS (non-metric multidimen-
sional scaling) graphs were constructed using the Vegan

package [100] and ggplot2 [101], using the Bray-Curtis
dissimilarity. Boxplots were constructed using the ggplot2
package. UpSet graphs were constructed using the UpSetR
package [102]. Correlation coefficients, using R’s hclust
function, were used to cluster samples and MAGs within
heatmaps. PERMANOVA analyses were performed using
the Adonis function from the Vegan package. The pack-
age DESeq2 [103] was used to calculate differences in
abundance for individual MAGs, taxonomies, and
CAZymes. For MAGs, subsampling to the lowest sample
coverage was performed prior to analysis by PERMA-
NOVA and NMDS and before calculating the 1× and 10×
coverage of MAGs in samples.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-020-1947-1.

Additional file 1. Contains Figure S1 and S2 (including legends). Also
contains Tables S1 to S5.

Additional file 2: Dataset 1. Average coverage of MAGs in all samples.
Coverage was calculated by mapping MAG scaffolds to the adaptor
trimmed Illumina reads for each sample. The average coverage of the
scaffolds from a MAG within a sample were taken as the average
abundance of that MAG in the sample.

Additional file 3: Dataset S2. Description of each chicken MAG
(metagenome-assembled genome), including novelty of species or strain,
NCBI_name, GTDB-Tk taxonomy, CheckM completeness and contamin-
ation, assembly size (mb), N50, number of contigs, the longest contig
length (bp) and the GC content.

Additional file 4: Dataset S3. Taxonomy assigned by MAGpy to MAGs.

Additional file 5: Dataset S4. Clustering of samples at 60% AAI to
form genus clusters. Novel genera were defined as clusters of MAGs at
60% AAI which were not assigned a genus by GTDB-Tk.

Additional file 6: Dataset S5. MAGs which were identified as being
significantly more abundant by DESeq2 between diets and lines.

Additional file 7: Dataset S6. CAZymes which were identified as being
significantly more abundant by DESeq2 between diets and lines.

Additional file 8. Review history.

Abbreviations
AAI: Average amino acid identity; AMR: Antimicrobial resistance; ANI: Average
nucleotide identity; CAZymes: Carbohydrate active enzymes;
MAGs: Metagenome-assembled genomes; NMDS: Non-metric
multidimensional scaling; PERMANOVA: Permutational multivariate analysis of
variance

Acknowledgements
We would like to thank the staff at the Greenwood Building, Roslin Institute,
for the care of our animals. We would also like to thank Prof. Aharon Oren
for aiding with the naming of new genera and species, and Denny Gorman
for his help with sample preparations. Sequencing was carried out by
Edinburgh Genomics, The University of Edinburgh.

Review history
The review history is available as Additional file 8.

Peer review information
Anahita Bishop was the primary editor on this article and managed its
editorial process and peer review in collaboration with the rest of the
editorial team.

Glendinning et al. Genome Biology           (2020) 21:34 Page 13 of 16

https://doi.org/10.1186/s13059-020-1947-1
https://doi.org/10.1186/s13059-020-1947-1


Authors’ contributions
LG contributed to the study design; sample collection, processing, analysis,
and interpretation; and manuscript preparation. RDS contributed to the
sample analysis and manuscript preparation. MJP contributed to the
taxonomic naming of new genera and species, data interpretation, and
drafting the manuscript. KAW contributed to the study design, data
interpretation, and manuscript preparation. MW contributed to the study
design, data analysis and interpretation, and manuscript preparation. All
authors read and approved the final manuscript.

Authors’ information
Twitter handles: Laura Glendinning (@Microbes4ever), Mark J. Pallen
(@mjpallen), Mick Watson (@BioMickWatson).

Funding
The Roslin Institute forms part of the Royal (Dick) School of Veterinary
Studies, University of Edinburgh. This project was supported by the
Biotechnology and Biological Sciences Research Council, including institute
strategic programme and national capability awards to The Roslin Institute
(BBSRC: BB/P013759/1, BB/P013732/1, BB/J004235/1, BB/J004243/1). MJP is
supported by the Quadram Institute Bioscience BBSRC-funded Strategic
Program: Microbes in the Food Chain (project no. BB/R012504/1) and its
constituent project BBS/E/F/000PR10351 (Theme 3, Microbial Communities
in the Food Chain) and by the Medical Research Council CLIMB grant (MR/
L015080/1).

Availability of data and materials
The paired-read fastq files generated and analysed during the current study
are available in the European Nucleotide Archive under project PRJEB33338
[104]. MAG fasta files are available in Edinburgh DataShare (https://doi.org/
10.7488/ds/2584).

Ethics approval and consent to participate
Animals were housed in premises licensed under a UK Home Office
Establishment License within the terms of the UK Home Office Animals
(Scientific Procedures) Act 1986. Housing and husbandry complied with the
Code of Practice for Housing and Care of Animals Bred, Supplied or Used for
Scientific Purposes and were overseen by the Roslin Institute Animal Welfare
and Ethical Review Board. Animals were culled by schedule one methods
authorised by the Animals (Scientific Procedures) Act 1986.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1Genetics and Genomics, The Roslin Institute and Royal (Dick) School of
Veterinary Studies, University of Edinburgh, Edinburgh, Midlothian, UK.
2Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, UK.
3School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK.
4School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK.

Received: 22 July 2019 Accepted: 27 January 2020

References
1. FAOSTAT database. FAO Rome, Italy. 2019. Available from: http://www.fao.

org/faostat/en/#home. [cited Apr 2019]
2. Bennett CE, Thomas R, Williams M, Zalasiewicz J, Edgeworth M, Miller H,

et al. The broiler chicken as a signal of a human reconfigured biosphere. R
Soc Open Sci. 2018;5:11.

3. Meat and seafood production & consumption. 2017. Available from:
https://ourworldindata.org/meat-and-seafood-production-consumption.
[cited Apr 2019]

4. OECD Food Agriculture Organization of the United Nations. Meat. OECD-
FAO agricultural outlook 2016-2025. Paris: OECD Publishing; 2016.

5. Prall GFW, van der Steen HAM, Plastow GS. Application of genomics to the
pork industry. J Animal Sci. 2005;83:E1–8.

6. Gill M, Smith P, Wilkinson JM. Mitigating climate change: the role of
domestic livestock. Animal. 2010;4:323–33.

7. Kabir SML. The role of probiotics in the poultry industry. Int J Mol Sci.
2009;10:3531–46.

8. Clavijo V, Florez MJV. The gastrointestinal microbiome and its association
with the control of pathogens in broiler chicken production: a review. Poult
Sci. 2018;97:1006–21.

9. Crhanova M, Hradecka H, Faldynova M, Matulova M, Havlickova H, Sisak F,
et al. Immune response of chicken gut to natural colonization by gut
microflora and to Salmonella enterica Serovar Enteritidis infection. Infect
Immun. 2011;79:2755–63.

10. Jozefiak D, Rutkowski A, Martin SA. Carbohydrate fermentation in the avian
ceca: a review. Anim Feed Sci Technol. 2004;113:1–15.

11. Karasawa Y. Significant role of the nitrogen recycling system through the
ceca occurs in protein-depleted chickens. J Exp Zool. 1999;283:418–25.

12. Parsons CM, Potter LM, Brown RD. Effects of dietary carbohydrate and of
intestinal microflora on excretion of endogenous amino-acids by poultry.
Poult Sci. 1983;62:483–9.

13. Wen C, Yan W, Sun C, Ji C, Zhou Q, Zhang D, et al. The gut microbiota is
largely independent of host genetics in regulating fat deposition in
chickens. Isme J. 2019;13:1422–36.

14. Mignon-Grasteau S, Narcy A, Rideau N, Chantry-Darmon C, Boscher M-Y,
Sellier N, et al. Impact of selection for digestive efficiency on microbiota
composition in the chicken. PLoS One. 2015;10:e0135488.

15. Stanley D, Denman SE, Hughes RJ, Geier MS, Crowley TM, Chen HL, et al.
Intestinal microbiota associated with differential feed conversion efficiency
in chickens. Appl Microbiol Biotechnol. 2012;96:1361–9.

16. Svihus B, Choct M, Classen HL. Function and nutritional roles of the avian
caeca: a review. Worlds Poult Sci J. 2013;69:249–63.

17. Watson M. Illuminating the future of DNA sequencing. Genome Biol. 2014;15:2.
18. Loman NJ, Watson M. Successful test launch for nanopore sequencing.

Nat Methods. 2015;12:303–4.
19. Shang Y, Kumar S, Oakley B, Kim WK. Chicken gut microbiota: importance

and detection technology. Front Vet Sci. 2018;5:11.
20. Medvecky M, Cejkova D, Polansky O, Karasova D, Kubasova T, Cizek A, et al.

Whole genome sequencing and function prediction of 133 gut anaerobes
isolated from chicken caecum in pure cultures. BMC Genomics. 2018;19:561.

21. Crhanova M, Karasova D, Juricova H, Matiasovicova J, Jahodarova E,
Kubasova T, et al. Systematic culturomics shows that half of chicken caecal
microbiota members can be grown in vitro except for two lineages of
Clostridiales and a single lineage of Bacteroidetes; 2019. p. 7.

22. Sangwan N, Xia FF, Gilbert JA. Recovering complete and draft population
genomes from metagenome datasets. Microbiome. 2016;4:11.

23. Kang DWD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for
accurately reconstructing single genomes from complex microbial
communities. PeerJ. 2015;3:15.

24. Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive
unexplored human microbiome diversity revealed by over 150,000
genomes from metagenomes spanning age, geography, and lifestyle. Cell.
2019;176:649–62.

25. Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A,
et al. A new genomic blueprint of the human gut microbiota. Nature.
2019;568:499–504.

26. Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ.
Extensive microbial and functional diversity within the chicken cecal
microbiome. PLoS One. 2014;9:13.

27. Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. The
genomic and proteomic landscape of the rumen microbiome revealed by
comprehensive genome-resolved metagenomics. bioRxiv. 2018: Preprint at
doi: https://doi.org/10.1101/489443.

28. Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, et al.
Assembly of 913 microbial genomes from metagenomic sequencing of the
cow rumen. Nat Commun. 2018;9:11.

29. Wang W, Hu H, Zijlstra RT, Zheng J, Gänzle MG. Metagenomic reconstructions
of gut microbial metabolism in weanling pigs. Microbiome. 2019;7:48.

30. Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV.
Untangling genomes from metagenomes: revealing an uncultured class of
marine euryarchaeota. Science. 2012;335:587–90.

31. Hugerth LW, Larsson J, Alneberg J, Lindh MV, Legrand C, Pinhassi J, et al.
Metagenome-assembled genomes uncover a global brackish microbiome.
Genome Biol. 2015;16:18.

Glendinning et al. Genome Biology           (2020) 21:34 Page 14 of 16

https://doi.org/10.7488/ds/2584
https://doi.org/10.7488/ds/2584
http://www.fao.org/faostat/en/#home
http://www.fao.org/faostat/en/#home
https://ourworldindata.org/meat-and-seafood-production-consumption
https://doi.org/10.1101/489443


32. Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al.
Thousands of microbial genomes shed light on interconnected
biogeochemical processes in an aquifer system. Nat Commun. 2016;7:11.

33. Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN,
et al. Recovery of nearly 8,000 metagenome-assembled genomes
substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.

34. Wu SB, Stanley D, Rodgers N, Swick RA, Moore RJ. Two necrotic enteritis
predisposing factors, dietary fishmeal and Eimeria infection, induce large changes
in the caecal microbiota of broiler chickens. Vet Microbiol. 2014;169:188–97.

35. Stanley D, Wu SB, Rodgers N, Swick RA, Moore RJ. Differential responses of
cecal microbiota to fishmeal, Eimeria and Clostridium perfringens in a
necrotic enteritis challenge model in chickens. PLoS One. 2014;9:10.

36. Munk P, Knudsen BE, Lukjancenko O, Duarte ASR, Van Gompel L, Luiken
REC, et al. Abundance and diversity of the faecal resistome in slaughter pigs
and broilers in nine European countries. Nat Microbiol. 2018;3:898–908.

37. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy
TBK, et al. Minimum information about a single amplified genome (MISAG)
and a metagenome- assembled genome (MIMAG) of bacteria and archaea.
Nat Biotechnol. 2017;35:725–31.

38. van der Wielen P, Rovers G, Scheepens JMA, Biesterveld S. Clostridium
lactatifermentans sp nov., a lactate-fermenting anaerobe isolated from the
caeca of a chicken. Int J Syst Evol Microbiol. 2002;52:921–5.

39. Boerlin P, Nicholson V, Brash M, Slavic D, Boyen F, Sanei B, et al. Diversity of
Enterococcus cecorum from chickens. Vet Microbiol. 2012;157:405–11.

40. Awad WA, Mann E, Dzieciol M, Hess C, Schmitz-Esser S, Wagner M, et al.
Age-related differences in the luminal and mucosa-associated gut
microbiome of broiler chickens and shifts associated with Campylobacter
jejuni infection. Front Cell Infect Microbiol. 2016;6.

41. Yu H, Si W, Gong J, Forster RJ, Yang C, Huang R, et al. 16S rRNA gene-based
analysis of mucosa-associated bacterial community and phylogeny in the
chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol Ecol.
2007;59:147–57.

42. Duggett NA, Kay GL, Sergeant MJ, Bedford M, Constantinidou CI, Penn CW,
et al. Draft genome sequences of six novel bacterial isolates from chicken
ceca. Genome Announc. 2016;4:e00448–16.

43. Stanley J, Linton D, Burnens AP, Dewhirst FE, On SLW, Porter A, et al.
Helicobacter pullorum sp nov - genotype and phenotype of a new species
isolated from poultry and from human patients with gastroenteritis
Microbiol-UK, vol. 140; 1994. p. 3441–9.

44. Lu J, Idris U, Harmon B, Hofacre C, Maurer JJ, Lee MD. Diversity and
succession of the intestinal bacterial community of the maturing broiler
chicken. Appl Environ Microbiol. 2003;69:6816.

45. Neal-McKinney JM, Lu X, Duong T, Larson CL, Call DR, Shah DH, et al.
Production of organic acids by probiotic Lactobacilli can be used to reduce
pathogen load in poultry. PLoS One. 2012;7:e43928.

46. Beasley SS, Takala TM, Reunanen J, Apajalahti J, Saris PEJ. Characterization
and electrotransformation of Lactobacillus crispatus isolated from chicken
crop and intestine. Poult Sci. 2004;83:45–8.

47. Fujisawa T, Benno Y, Yaeshima T, Mitsuoka T. Taxonomic study of the
lactobacillus-acidophilus group, with recognition of lactobacillus-gallinarum sp-
nov and lactobacillus-johnsonii sp-nov and synonymy of lactobacillus-
acidophilus group-a3 (Johnson et-al 1980) with the type strain of lactobacillus-
amylovorus (Nakamura 1981). Int J Syst Bacteriol. 1992;42:487–91.

48. Taheri HR, Moravej H, Tabandeh F, Zaghari M, Shivazad M. Efficacy of
combined or single use of Lactobacillus crispatus LT116 and L. johnsonii
LT171 on broiler performance. Br Poult Sci. 2010;51:580–5.

49. Bjerrum L, Engberg RM, Leser TD, Jensen BB, Finster K, Pedersen K. Microbial
community composition of the ileum and cecum of broiler chickens as revealed
by molecular and culture-based techniques. Poult Sci. 2006;85:1151–64.

50. Dec M, Nowaczek A, Urban-Chmiel R, Stepien-Pysniak D, Wernicki A.
Probiotic potential of Lactobacillus isolates of chicken origin with anti-
Campylobacter activity. J Vet Med Sci. 2018;80:1195–203.

51. Yu B, Liu JR, Hsiao FS, Chiou PWS. Evaluation of Lactobacillus reuteri Pg4
strain expressing heterologous β-glucanase as a probiotic in poultry diets
based on barley. Anim Nutr Feed Techn. 2008;141:82–91.

52. Saint-Cyr MJ, Haddad N, Taminiau B, Poezevara T, Quesne S, Amelot M,
et al. Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to
control Campylobacter jejuni in broilers. Int J Food Microbiol. 2017;247:9–17.

53. Zanoni RG, Rossi M, Giacomucci D, Sanguinetti V, Manfreda G. Occurrence
and antibiotic susceptibility of Helicobacter pullorum from broiler chickens
and commercial laying hens in Italy. Int J Food Microbiol. 2007;116:168–73.

54. Ceelen LM, Decostere A, Van den Buick K, On SLW, Baele M, Ducatelle R,
et al. Helicobacter pullorum in chickens, Belgium. Emerg Infect Dis. 2006;12:
263–7.

55. Kaakoush NO, Sodhi N, Chenu JW, Cox JM, Riordan SM, Mitchell HM. The
interplay between Campylobacter and Helicobacter species and other
gastrointestinal microbiota of commercial broiler chickens. Gut Pathogens.
2014;6:10.

56. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B.
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for
glycogenomics. Nucleic Acids Res. 2009;37:D233–D8.

57. Luo CW, Rodriguez LM, Konstantinidis KT. MyTaxa: an advanced taxonomic
classifier for genomic and metagenomic sequences. Nucleic Acids Res. 2014;
42:12.

58. Orata FD, Meier-Kolthoff JP, Sauvageau D, Stein LY. Phylogenomic analysis
of the gammaproteobacterial methanotrophs (order Methylococcales) calls
for the reclassification of members at the genus and species levels. Front
Microbiol. 2018;9:17.

59. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for
prokaryotes. J Bacteriol. 2005;187:6258–64.

60. Cruz-Morales P, Orellana CA, Moutafis G, Moonen G, Rincon G, Nielsen LK,
et al. Revisiting the evolution and taxonomy of Clostridia, a phylogenomic
update. Genome Biol Evol. 2019;Epub ahead of print: evz096.

61. Coil DA, Jospin G, Darling AE, Wallis C, Davis IJ, Harris S, et al. Genomes
from bacteria associated with the canine oral cavity: a test case for
automated genome-based taxonomic assignment. PLoS One. 2019;14:9.

62. Ballou AL, Ali RA, Mendoza MA, Ellis JC, Hassan HM, Croom WJ, et al.
Development of the chick microbiome: how early exposure influences
future microbial diversity. Front Vet Sci. 2016;3:12.

63. Oakley BB, Buhr RJ, Ritz CW, Kiepper BH, Berrang ME, Seal BS, et al. Successional
changes in the chicken cecal microbiome during 42 days of growth are
independent of organic acid feed additives. BMC Vet Res. 2014;10:8.

64. Sekelja M, Rud I, Knutsen SH, Denstadli V, Westereng B, Naes T, et al. Abrupt
temporal fluctuations in the chicken fecal microbiota are explained by its
gastrointestinal origin. Appl Environ Microbiol. 2012;78:2941–8.

65. Stanley D, Geier MS, Denman SE, Haring VR, Crowley TM, Hughes RJ, et al.
Identification of chicken intestinal microbiota correlated with the efficiency
of energy extraction from feed. Vet Microbiol. 2013;164:85–92.

66. Wei S, Morrison M, Yu Z. Bacterial census of poultry intestinal microbiome.
Poult Sci. 2013;92:671–83.

67. Hieke ASC, Hubert SM, Athrey G. Circadian disruption and divergent
microbiota acquisition under extended photoperiod regimens in chicken.
PeerJ. 2019;7:28.

68. Kubasova T, Kollarcikova M, Crhanova M, Karasova D, Cejkova D, Sebkova A,
et al. Contact with adult hen affects development of caecal microbiota in
newly hatched chicks. PLoS One. 2019;14:13.

69. Ferrario C, Alessandri G, Mancabelli L, Gering E, Mangifesta M, Milani C, et al.
Untangling the cecal microbiota of feral chickens by culturomic and
metagenomic analyses. Environ Microbiol. 2017;19:4771–83.

70. Stanley D, Geier MS, Hughes RJ, Denman SE, Moore RJ. Highly variable
microbiota development in the chicken gastrointestinal tract. PLoS One.
2013;8:7.

71. Videnska P, Sedlar K, Lukac M, Faldynova M, Gerzova L, Cejkova D, et al.
Succession and replacement of bacterial populations in the caecum of egg
laying hens over their whole life. PLoS One. 2014;9:14.

72. Mancabelli L, Ferrario C, Milani C, Mangifesta M, Turroni F, Duranti S, et al.
Insights into the biodiversity of the gut microbiota of broiler chickens.
Environ Microbiol. 2016;18:4727–38.

73. Pandit RJ, Hinsu AT, Patel NV, Koringa PG, Jakhesara SJ, Thakkar JR, et al.
Microbial diversity and community composition of caecal microbiota in
commercial and indigenous Indian chickens determined using 16s rDNA
amplicon sequencing. Microbiome. 2018;6:13.

74. Ding JM, Zhao LL, Wang LF, Zhao WJ, Zhai ZX, Leng L, et al. Divergent
selection-induced obesity alters the composition and functional pathways
of chicken gut microbiota. Genet Sel Evol. 2016;48:9.

75. Ocejo M, Oporto B, Hurtado A. 16S rRNA amplicon sequencing characterization
of caecal microbiome composition of broilers and free-range slow-growing
chickens throughout their productive lifespan. Sci Rep. 2019;9:14.

76. Jebava I, Chuat V, Lortal S, Valence F. Peptidoglycan hydrolases as species-
specific markers to differentiate Lactobacillus helveticus from Lactobacillus
gallinarum and other closely related homofermentative Lactobacilli. Curr
Microbiol. 2014;68:551–7.

Glendinning et al. Genome Biology           (2020) 21:34 Page 15 of 16



77. Saminathan M, Sieo CC, Kalavathy R, Abdullah N, Ho YW. Effect of prebiotic
oligosaccharides on growth of Lactobacillus strains used as a probiotic for
chickens. Afr J Microbiol Res. 2011;5:57–64.

78. Askelson TE, Campasino A, Lee JT, Duong T. Evaluation of phytate-
degrading Lactobacillus culture administration to broiler chickens. Appl
Environ Microbiol. 2014;80:943–50.

79. Manfreda G, Parisi A, Lucchi A, Zanoni RG, De Cesare A. Prevalence of
Helicobacter pullorum in conventional, organic, and free-range broilers and
typing of isolates. Appl Environ Microbiol. 2011;77:479–84.

80. Eeckhaut V, Van Immerseel F, Croubels S, De Baere S, Haesebrouck F,
Ducatelle R, et al. Butyrate production in phylogenetically diverse Firmicutes
isolated from the chicken caecum. Microb Biotechnol. 2011;4:503–12.

81. Polansky O, Sekelova Z, Faldynova M, Sebkova A, Sisak F, Rychlik I. Important
metabolic pathways and biological processes expressed by chicken cecal
microbiota. Appl Environ Microbiol. 2016;82:1569–76.

82. Glendinning L, Wright S, Pollock J, Tennant P, Collie D, McLachlan G.
Variability of the sheep lung microbiota. Appl Environ Microbiol. 2016;82:
3225–38.

83. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 2014;30:2114–20.

84. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol. 2014;15:12.

85. Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for
single-cell and metagenomic sequencing data with highly uneven depth.
Bioinformatics. 2012;28:1420–8.

86. Li H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv. 2013: Preprint at https://arxiv.org/abs/1303.3997. Accessed
22 Feb 2019.

87. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:
2078–9.

88. Li DH, Liu CM, Luo RB, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-
node solution for large and complex metagenomics assembly via succinct
de Bruijn graph. Bioinformatics. 2015;31:1674–6.

89. Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate
genomic comparisons that enables improved genome recovery from
metagenomes through de-replication. Isme J. 2017;11:2864–8.

90. Parks D. CompareM. https://github.com/dparks1134/CompareM. Accessed
14 June 2019.

91. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM:
assessing the quality of microbial genomes recovered from isolates, single
cells, and metagenomes. Genome Res. 2015;25:1043–55.

92. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA,
et al. A standardized bacterial taxonomy based on genome phylogeny
substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.

93. Stewart RD, Auffret MD, Snelling TJ, Roehe R, Watson M. MAGpy: A
reproducible pipeline for the downstream analysis of metagenome-
assembled genomes (MAGs). Bioinformatics. 2018;35:bty905.

94. Rambaut A. FigTree v1. 4. https://github.com/rambaut/figtree. Accessed 22
Feb 2019.

95. Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. Compact
graphical representation of phylogenetic data and metadata with GraPhlAn.
PeerJ. 2015;3:17.

96. Parker CT, Tindall BJ, Garrity GM. International code of nomenclature of
prokaryotes: prokaryotic code (2008 revision). Int J Syst Evol Microbiol. 2019;
69:S7–S111.

97. Martin M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet J. 2011;17:10–2.

98. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
DIAMOND. Nat Methods. 2015;12:59–60.

99. Team RC. R: A language and environment for statistical computing.
http://www.R-project.org/. Accessed 22 Feb 2019.

100. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan:
community ecology package. https://CRAN.R-project.org/package=vegan.
Accessed 22 Feb 2019.

101. Wickham H. ggplot2: elegant graphics for data analysis. https://ggplot2.
tidyverse.org/. Accessed 22 Feb 2019.

102. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization
of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.

103. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:552.

104. Glendinning L, Stewart RD, Pallen MJ, Watson KA, Watson M: Metagenomics
of chicken cecal contents. PRJEB33338. Eur Nucleotide Arch. https://www.
ebi.ac.uk/ena/data/view/PRJEB33338. 2019.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Glendinning et al. Genome Biology           (2020) 21:34 Page 16 of 16

https://arxiv.org/abs/1303.3997
https://github.com/dparks1134/CompareM
https://github.com/rambaut/figtree
http://www.r-project.org/
https://cran.r-project.org/package=vegan
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://www.ebi.ac.uk/ena/data/view/PRJEB33338
https://www.ebi.ac.uk/ena/data/view/PRJEB33338

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Assembly of 469 draft microbial genomes from chicken caeca
	Newly constructed MAGs are abundant in chicken populations across Europe
	Presence of a core broiler caecal microbiota
	Differences in caecal MAGs based on chicken line and diet
	Differences in CAZymes between lines and diets
	Line and gender impact the weight of the chicken

	Discussion
	Conclusions
	Methods
	Study design
	Bioinformatics
	Statistics and graphs

	Supplementary information
	Abbreviations
	Acknowledgements
	Review history
	Peer review information
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

