Nature Methods. Method of the year 2013. Nat Methods. 2014; 11(1):1–1. https://doi.org/10.1038/nmeth.2801. Accessed 15 Oct 2019.
Article
CAS
Google Scholar
Anchang B, Hart TDP, Bendall SC, Qiu P, Bjornson Z, Linderman M, Nolan GP, Plevritis SK. Visualization and cellular hierarchy inference of single-cell data using SPADE. Nat Protocol. 2016; 11(7):1264–79. https://doi.org/10.1038/nprot.2016.066. Accessed 21 June 2016.
Article
CAS
Google Scholar
Francis JM, Zhang C-Z, Maire CL, Jung J, Manzo VE, Adalsteinsson VA, Homer H, Haidar S, Blumenstiel B, Pedamallu CS, Ligon AH, Love JC, Meyerson M, Ligon KL. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. Cancer Discov. 2014; 4(8):956–71. https://doi.org/10.1158/2159-8290.CD-13-0879. Accessed 01 Aug 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawson DA, Kessenbrock K, Davis RT, Pervolarakis N, Werb Z. Tumour heterogeneity and metastasis at single-cell resolution. Nat Cell Biol. 2018; 20(12):1349. https://doi.org/10.1038/s41556-018-0236-7. Accessed 01 Aug 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M, Clevers H, Deplancke B, Dunham I, Eberwine J, Eils R, Enard W, Farmer A, Fugger L, Göttgens B, Hacohen N, Haniffa M, Hemberg M, Kim S, Klenerman P, Kriegstein A, Lein E, Linnarsson S, Lundeberg J, Majumder P, Marioni JC, Merad M, Mhlanga M, Nawijn M, Netea M, Nolan G, Pe’er D, Phillipakis A, Ponting CP, Quake S, Reik W, Rozenblatt-Rosen O, Sanes J, Satija R, Schumacher TN, Shalek A, Shapiro E, Sharma P, Shin JW, Stegle O, Stratton M, Stubbington MJT, Oudenaarden AV, Wagner A, Watt F, Weissman J, Wold B, Xavier R, Yosef N, et al.The Human Cell Atlas. 2017. https://doi.org/10.1101/121202. Accessed 27 Mar 2019.
Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, Mazutis L. Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc. 2017; 12(1):44–73.
Article
CAS
PubMed
Google Scholar
Vitak SA, Torkenczy KA, Rosenkrantz JL, Fields AJ, Christiansen L, Wong MH, Carbone L, Steemers FJ, Adey A. Sequencing thousands of single-cell genomes with combinatorial indexing. Nat Methods. 2017; 14(3):302–8. https://doi.org/10.1038/nmeth.4154. Accessed 28 June 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protocols. 2018; 13(4):599–604. https://doi.org/10.1038/nprot.2017.149. Accessed 28 June 2019.
Article
CAS
PubMed
Google Scholar
Luo T, Fan L, Zhu R, Sun D. Microfluidic single-cell manipulation and analysis: methods and applications. Micromachines (Basel). 2019; 10(2):104. https://doi.org/10.3390/mi10020104.
Article
Google Scholar
Gao D, Jin F, Zhou M, Jiang Y. Recent advances in single cell manipulation and biochemical analysis on microfluidics. Analyst. 2019; 144(3):766–81.
Article
CAS
PubMed
Google Scholar
Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, Steemers FJ, Trapnell C, Shendure J. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019; 566(7745):496. https://doi.org/10.1038/s41586-019-0969-x. Accessed 28 June 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amezquita RA, Carey VJ, Carpp LN, Geistlinger L, Lun ATL, Marini F, Rue-Albrecht K, Risso D, Soneson C, Waldron L, Pagès H, Smith M, Huber W, Morgan M, Gottardo R, Hicks SC. Orchestrating single-cell analysis with bioconductor. bioRxiv. 2019:590562. https://doi.org/10.1101/590562. Accessed 28 Oct 2019.
Hicks SC, Peng RD. Elements and principles of data analysis. arXiv:1903.07639 [stat]. 2019. http://arxiv.org/abs/1903.07639. Accessed 02 Apr 2019.
Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Göttgens B, Rajewsky N, Simon L, Theis FJ. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019; 20(1):59. https://doi.org/10.1186/s13059-019-1663-x. Accessed 01 Apr 2019.
Article
PubMed
PubMed Central
Google Scholar
Pezzotti N, Höllt T, Lelieveldt B, Eisemann E, Vilanova A. Hierarchical stochastic neighbor embedding. Comput Graphics Forum. 2016; 35(3):21–30. https://doi.org/10.1111/cgf.12878. Accessed 28 June 2019.
Article
Google Scholar
Unen VV, Höllt T, Pezzotti N, Li N, Reinders MJT, Eisemann E, Koning F, Vilanova A, Lelieveldt BPF. Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types. Nat Commun. 2017; 8(1):1740. https://doi.org/10.1038/s41467-017-01689-9. Accessed 28 June 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Höllt T, Pezzotti N, Unen VV, Koning F, Lelieveldt BPF, Vilanova A. CyteGuide: visual guidance for hierarchical single-cell analysis. IEEE Trans Vis Comput Graph. 2018; 24(1):739–48. https://doi.org/10.1109/TVCG.2017.2744318.
Article
PubMed
Google Scholar
Welch JD, Hartemink AJ, Prins JF. MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics. Genome Biol. 2017; 18(1):138.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moon KR, Stanley JS, Burkhardt D, van Dijk D, Wolf G, Krishnaswamy S. Manifold learning-based methods for analyzing single-cell RNA-sequencing data. Curr Opin Syst Biol. 2018; 7:36–46.
Article
Google Scholar
Hoffer E, Ailon N. Deep metric learning Using triplet network In: Feragen A, Pelillo M, Loog M, editors. Similarity-Based Pattern Recognition. Lecture Notes in Computer Science. Heidelberg: Springer: 2015. p. 84–92.
Google Scholar
Bromley J, Bentz JW, Bottou L, Guyon I, Lecun Y, Moore C, Säckinger E, Shah R. Signature verification using a “Siamese” time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence. 1993; 07(04):669–88. https://doi.org/10.1142/S0218001493000339. Accessed 28 Mar 2019.
Article
Google Scholar
Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010; 11(10):733–739. https://doi.org/10.1038/nrg2825. Accessed 27 Mar 2019.
Article
CAS
PubMed
Google Scholar
Severson DT, Owen RP, White MJ, Lu X, Schuster-Böckler B. BEARscc determines robustness of single-cell clusters using simulated technical replicates. Nat Commun. 2018; 9(1):1187.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sengupta D, Rayan NA, Lim M, Lim B, Prabhakar S. Fast, scalable and accurate differential expression analysis for single cells. bioRxiv. 2016:049734. https://doi.org/10.1101/049734. Accessed 27 Mar 2019.
Sinha D, Kumar A, Kumar H, Bandyopadhyay S, Sengupta D. dropclust: efficient clustering of ultra-large scRNA-seq data. Nucleic Acids Res. 2018; 46(6):36.
Article
CAS
Google Scholar
Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018; 19(1):15.
Article
PubMed
PubMed Central
Google Scholar
Iacono G, Mereu E, Guillaumet-Adkins A, Corominas R, Cuscó I, Rodríguez-Esteban G, Gut M, Pérez-Jurado LA, Gut I, Heyn H. bigSCale: an analytical framework for big-scale single-cell data. Genome Res. 2018; 28(6):878–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu Y, Li C, Lu S, Zhou W, Tang F, Xie XS, Huang Y. Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification. Proc Natl Acad Sci U S A. 2015; 112(38):11923–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hosokawa M, Nishikawa Y, Kogawa M, Takeyama H. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics. Sci Rep. 2017; 7(1):5199.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sidore AM, Lan F, Lim SW, Abate AR. Enhanced sequencing coverage with digital droplet multiple displacement amplification. Nucleic Acids Res. 2016; 44(7):66.
Article
CAS
Google Scholar
Picher ÁJ, Budeus B, Wafzig O, Krüger C, García-Gómez S, Martínez-Jiménez MI, Díaz-Talavera A, Weber D, Blanco L, Schneider A. TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol. Nat Commun. 2016; 7:13296.
Article
CAS
PubMed
PubMed Central
Google Scholar
Potapov V, Ong JL. Examining sources of error in PCR by single-molecule sequencing. PLoS ONE. 2017; 12(1):0169774.
Article
CAS
Google Scholar
Xi L, Belyaev A, Spurgeon S, Wang X, Gong H, Aboukhalil R, Fekete R. New library construction method for single-cell genomes. PLoS ONE. 2017; 12(7):0181163.
Article
CAS
Google Scholar
Zahn H, Steif A, Laks E, Eirew P, VanInsberghe M, Shah SP, Aparicio S, Hansen CL. Scalable whole-genome single-cell library preparation without preamplification. Nat. Methods. 2017; 14(2):167–73.
Article
CAS
PubMed
Google Scholar
Laks E, Zahn H, Lai D, McPherson A, Steif A, Brimhall J, Biele J, Wang B, Masud T, Grewal D, Nielsen C, Leung S, Bojilova V, Smith M, Golovko O, Poon S, Eirew P, Kabeer F, Algara TRD, Lee SR, Taghiyar MJ, Huebner C, Ngo J, Chan T, Vatrt-Watts S, Walters P, Abrar N, Chan S, Wiens M, Martin L, Scott RW, Underhill MT, Chavez E, Steidl C, Costa DD, Ma Y, Coope RJN, Corbett R, Pleasance S, Moore R, Mungall AJ, Consortium CI, Marra MA, Hansen C, Shah S, Aparicio S. Resource: scalable whole genome sequencing of 40,000 single cells identifies stochastic aneuploidies, genome replication states and clonal repertoires. bioRxiv. 2018:411058. https://doi.org/10.1101/411058. Accessed 16 Oct 2018.
Chen C, Xing D, Tan L, Li H, Zhou G, Huang L, Xie XS. Single-cell whole-genome analyses by linear amplification via transposon insertion (LIANTI). Science. 2017; 356(6334):189–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015; 523(7561):486–90. https://doi.org/10.1038/nature14590. Accessed 30 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson KL, Steemers FJ, Trapnell C, Shendure J. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science (New York). 2015; 348(6237):910–4. https://doi.org/10.1126/science.aab1601.
Article
CAS
Google Scholar
Karemaker ID, Vermeulen M. Single-cell DNA methylation profiling: technologies and biological applications. Trends Biotechnol. 2018; 36(9):952–65. https://doi.org/10.1016/j.tibtech.2018.04.002. Accessed 30 Apr 2019.
Article
CAS
PubMed
Google Scholar
Virant-Klun I, Leicht S, Hughes C, Krijgsveld J. Identification of maturation-specific proteins by single-cell proteomics of human oocytes. Mol Cell Proteomics MCP. 2016; 15(8):2616–27. https://doi.org/10.1074/mcp.M115.056887.
Article
CAS
PubMed
Google Scholar
Clark SJ, Argelaguet R, Kapourani C-A, Stubbs TM, Lee HJ, Alda-Catalinas C, Krueger F, Sanguinetti G, Kelsey G, Marioni JC, Stegle O, Reik W. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat Commun. 2018; 9(1):781. https://doi.org/10.1038/s41467-018-03149-4. Accessed 27 Mar 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, Daza RM, McFaline-Figueroa JL, Packer JS, Christiansen L, Steemers FJ, Adey AC, Trapnell C, Shendure J. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science. 2018; 361(6409):1380–5. https://doi.org/10.1126/science.aau0730. Accessed 30 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hicks SC, Townes FW, Teng M, Irizarry RA. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics. 2018; 19(4):562–78. https://doi.org/10.1093/biostatistics/kxx053. Accessed 27 Mar 2019.
Article
PubMed
Google Scholar
Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016; 17(1):63. https://doi.org/10.1186/s13059-016-0927-y. Accessed 27 Mar 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Das S, Abecasis GR, Browning BL. Genotype imputation from large reference panels. Annu Rev Genomics Hum Genet. 2018; 19(1):73–96. https://doi.org/10.1146/annurev-genom-083117-021602. Accessed 28 Oct 2019.
Article
CAS
PubMed
Google Scholar
Das S, Abecasis GR, Browning BL. Genotype imputation from large reference panels. Annu Rev Genomics Hum Genet. 2018; 19:73–96. https://doi.org/10.1146/annurev-genom-083117-021602.
Article
CAS
PubMed
Google Scholar
Tang W, Bertaux F, Thomas P, Stefanelli C, Saint M, et al.bayNorm: Bayesian gene expression recovery, imputation and normalisation for single cell RNA-sequencing data. bioRxiv. 2018. https://www.biorxiv.org/content/10.1101/384586v2.abstract.
Azizi E, Prabhakaran S, Carr A, Pe’er D. Bayesian inference for single-cell clustering and imputing. Genomics Comput Biol. 2017; 3(1):46. https://doi.org/10.18547/gcb.2017.vol3.iss1.e46. Accessed 27 Mar 2019.
Article
Google Scholar
Lin P, Troup M, Ho JWK. CIDR: ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 2017; 18(1):59. https://doi.org/10.1186/s13059-017-1188-0. Accessed 27 Mar 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, Murray JI, Raj A, Li M, Zhang NR. SAVER: gene expression recovery for single-cell RNA sequencing. Nat Methods. 2018; 15(7):539. https://doi.org/10.1038/s41592-018-0033-z. Accessed 27 Mar 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li WV, Li JJ. An accurate and robust imputation method scimpute for single-cell RNA-seq data. Nat Commun. 2018; 9(1):997.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miao Z, Li J, Zhang X. scRecover: discriminating true and false zeros in single-cell RNA-seq data for imputation. bioRxiv. 2019:665323. https://doi.org/10.1101/665323. Accessed 15 Oct 2019.
Chen M, Zhou X. VIPER: variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies. Genome Biol. 2018; 19(1):196.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong W, Kwak I-Y, Pota P, Koyano-Nakagawa N, Garry DJ. DrImpute: imputing dropout events in single cell RNA sequencing data. BMC Bioinformatics. 2018; 19(1):220. https://doi.org/10.1186/s12859-018-2226-y. Accessed 27 Mar 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wagner F, Yan Y, Yanai I. K-nearest neighbor smoothing for high-throughput single-cell RNA-Seq data. bioRxiv. 2018:217737. https://doi.org/10.1101/217737. Accessed 15 Oct 2019.
Moussa M, Mǎndoiu II. Locality sensitive imputation for single cell RNA-Seq data. J Comput Biol. 2019. https://doi.org/10.1089/cmb.2018.0236. Accessed 27 July 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dijk DV, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, Burdziak C, Moon KR, Chaffer CL, Pattabiraman D, Bierie B, Mazutis L, Wolf G, Krishnaswamy S, Pe’er D. Recovering gene interactions from single-cell data using data diffusion. Cell. 2018; 174(3):716–72927. https://doi.org/10.1016/j.cell.2018.05.061. Accessed 27 Mar 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jonathan Ronen AA. netsmooth: network-smoothing based imputation for single cell RNA-seq. F1000Res. 2018; 7. https://github.com/BIMSBbioinfo/netSmooth.
Linderman GC, Zhao J, Kluger Y. Zero-preserving imputation of scRNA-seq data using low-rank approximation. bioRxiv. 2018. https://www.biorxiv.org/content/10.1101/397588v1.abstract.
Wagner F, Barkley D, Yanai I. Accurate denoising of single-cell RNA-Seq data using unbiased principal component analysis. bioRxiv. 2019:655365. URL https://doi.org/10.1101/655365. Accessed 15 Nov 2019.
Chen C, Wu C, Wu L, Wang Y, Deng M, Xi R. scRMD: imputation for single cell RNA-seq data via robust matrix decomposition. bioRxiv. 2018:459404. https://doi.org/10.1101/459404. Accessed 15 Oct 2019.
Kotliar D, Veres A, Nagy MA, Tabrizi S, Hodis E, Melton DA, Sabeti PC. Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. Elife. 2019; 8:43803.
Article
Google Scholar
Buettner F, Pratanwanich N, McCarthy DJ, Marioni JC, Stegle O. f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq. Genome Biol. 2017; 18(1):212. https://doi.org/10.1186/s13059-017-1334-8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Verma A, Engelhardt BE. A robust nonlinear low-dimensional manifold for single cell RNA-seq data. bioRxiv. 2018:443044. https://doi.org/10.1101/443044. Accessed 15 Nov 2019.
Durif G, Modolo L, Mold JE, Lambert-Lacroix S, Picard F. Probabilistic count matrix factorization for single cell expression data analysis. Bioinformatics. 2019. https://doi.org/10.1093/bioinformatics/btz177.
Article
PubMed
Google Scholar
Stein-O’Brien GL, Clark BS, Sherman T, Zibetti C, Hu Q, Sealfon R, Liu S, Qian J, Colantuoni C, Blackshaw S, Goff LA, Fertig EJ. Decomposing cell identity for transfer learning across cellular measurements, platforms, tissues, and species. Cell Syst. 2019; 8(5):395–4118. https://doi.org/10.1016/j.cels.2019.04.004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jung M, Wells D, Rusch J, Ahmad S, Marchini J, Myers SR, Conrad DF. Unified single-cell analysis of testis gene regulation and pathology in five mouse strains. eLife. 2019; 8. URL https://doi.org/10.7554/eLife.43966.
Pierson E, Yau C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015; 16(1):241. https://doi.org/10.1186/s13059-015-0805-z. Accessed 27 Mar 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert J-P. A general and flexible method for signal extraction from single-cell RNA-seq data. Nature Commun. 2018; 9(1):284. https://doi.org/10.1038/s41467-017-02554-5.
Article
CAS
Google Scholar
Talwar D, Mongia A, Sengupta D, Majumdar A. AutoImpute: autoencoder based imputation of single-cell RNA-seq data. Sci Rep. 2018; 8(1):16329. https://doi.org/10.1038/s41598-018-34688-x.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang T, Johnson TS, Shao W, Lu Z, Helm BR, Zhang J, Huang K. BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes. Genome Biol. 2019; 20(1):165. https://doi.org/10.1186/s13059-019-1764-6. Accessed 15 Nov 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arisdakessian C, Poirion O, Yunits B, Zhu X, Garmire L. DeepImpute: an accurate, fast and scalable deep neural network method to impute single-cell RNA-Seq data. bioRxiv. 2018. https://www.biorxiv.org/content/10.1101/353607v1.abstract.
Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun. 2019; 10(1):390. https://doi.org/10.1038/s41467-018-07931-2. Accessed 27 Mar 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Srinivasan S, Johnson NT, Korkin D. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data. bioRxiv. 2019. https://www.biorxiv.org/content/10.1101/511626v1.abstract.
Zhang X-F, Ou-Yang L, Yang S, Zhao X-M, Hu X, Yan H. EnImpute: imputing dropout events in single cell RNA sequencing data via ensemble learning. Bioinformatics. 2019. https://doi.org/10.1093/bioinformatics/btz435.
Article
PubMed
Google Scholar
Kinalis S, Nielsen FC, Winther O, Bagger FO. Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data. BMC Bioinformatics. 2019; 20(1):379. https://doi.org/10.1186/s12859-019-2952-9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Badsha MB, Li R, Liu B, Li YI, Xian M, Banovich NE, Fu AQ. Imputation of single-cell gene expression with an autoencoder neural network. bioRxiv. 2018:504977. https://doi.org/10.1101/504977. Accessed 15 Oct 2019.
Lin C, Jain S, Kim H, Bar-Joseph Z. Using neural networks for reducing the dimensions of single-cell RNA-Seq data. Nucleic Acids Res. 2017; 45(17):156.
Article
CAS
Google Scholar
Amodio M, Dijk DV, Srinivasan K, Chen WS, Mohsen H, Moon KR, Campbell A, Zhao Y, Wang X, Venkataswamy M, Desai A, Ravi V, Kumar P, Montgomery R, Wolf G, Krishnaswamy S. Exploring single-cell data with deep multitasking neural networks. bioRxiv. 2019:237065. https://doi.org/10.1101/237065. Accessed 15 Oct 2019.
Deng Y, Bao F, Dai Q, Wu LF, Altschuler SJ. Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning. Nat Methods. 2019. https://doi.org/10.1038/s41592-019-0353-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grønbech CH, Vording MF, Timshel P, Sønderby CK, Pers TH, Winther O. scVAE: Variational auto-encoders for single-cell gene expression data. bioRxiv. 2019:318295. https://doi.org/10.1101/318295. Accessed 15 Oct 2019.
Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Methods. 2018; 15(12):1053–8. https://doi.org/10.1038/s41592-018-0229-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding J, Condon A, Shah SP. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat Commun. 2018; 9(1):2002.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang D, Gu J. VASC: Dimension reduction and visualization of single-cell RNA-seq data by deep variational autoencoder. Genomics Proteomics Bioinforma. 2018; 16(5):320–31.
Article
Google Scholar
Zhang C. Single-cell data analysis using mmd variational autoencoder for a more informative latent representation. bioRxiv. 2019:613414. https://doi.org/10.1101/613414. Accessed 15 Oct 2019.
Leote AC, Wu X, Beyer A. Network-based imputation of dropouts in single-cell RNA sequencing data. bioRxiv. 2019:611517. URL https://doi.org/10.1101/611517. Accessed 23 Apr 2019.
Wang J, Agarwal D, Huang M, Hu G, Zhou Z, Ye C, Zhang NR. Data denoising with transfer learning in single-cell transcriptomics. Nat Methods. 2019; 16(9):875–8. https://doi.org/10.1038/s41592-019-0537-1. Accessed 15 Oct 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng T, Zhu Q, Yin P, Tan K. SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data. Genome Biol. 2019; 20(1):88. https://doi.org/10.1186/s13059-019-1681-8.
Article
PubMed
PubMed Central
Google Scholar
Zhu L, Lei J, Devlin B, Roeder K. A unified statistical framework for single cell and bulk RNA sequencing data. Ann Appl Stat. 2018; 12(1):609–32. https://doi.org/10.1214/17-AOAS1110. Accessed 15 Nov 2019.
Article
PubMed
PubMed Central
Google Scholar
Andrews TS, Hemberg M. False signals induced by single-cell imputation. F1000Research. 2019; 7:1740. https://doi.org/10.12688/f1000research.16613.2. Accessed 28 June 2019.
Article
PubMed Central
Google Scholar
Campbell KR, Steif A, Laks E, Zahn H, Lai D, McPherson A, Farahani H, Kabeer F, O’Flanagan C, Biele J, Brimhall J, Wang B, Walters P, Consortium I, Bouchard-Côté A, Aparicio S, Shah SP. clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers. Genome Biol. 2019; 20(1):54. https://doi.org/10.1186/s13059-019-1645-z. Accessed 27 Mar 2019.
Article
PubMed
PubMed Central
Google Scholar
Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, Buettner F, Huber W, Stegle O. Multi-omics factor analysis—a framework for unsupervised integration of multi-omics data sets. Mol Syst Biol. 2018; 14(6):8124. https://doi.org/10.15252/msb.20178124. Accessed 27 Mar 2019.
Article
CAS
Google Scholar
Zhang L, Zhang S. Comparison of computational methods for imputing single-cell RNA-sequencing data. IEEE/ACM Trans Comput Biol Bioinforma. 2018:1. https://doi.org/10.1109/TCBB.2018.2848633.
Hu Q, Greene CS. Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics. Pac Symp Biocomput. 2019; 24:362–73.
PubMed
PubMed Central
Google Scholar
Sun S, Zhu J, Ma Y, Zhou X. Accuracy, robustness and scalability of dimensionality reduction methods for single cell RNAseq analysis. bioRxiv. 2019. https://www.biorxiv.org/content/10.1101/641142v1.abstract.
Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. bioRxiv. 2019:576827. https://doi.org/10.1101/576827. Accessed 15 Oct 2019.
Townes FW, Hicks SC, Aryee MJ, Irizarry RA. Feature selection and dimension reduction for single cell RNA-Seq based on a multinomial model. bioRxiv. 2019:574574. https://doi.org/10.1101/574574. Accessed 15 Oct 2019.
Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, Wan E, Wong S, Byrnes L, Lanata CM, Gate RE, Mostafavi S, Marson A, Zaitlen N, Criswell LA, Ye CJ. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat Biotechnol. 2018; 36(1):89–94.
Article
CAS
PubMed
Google Scholar
Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA. Single-cell transcriptomics to explore the immune system in health and disease. Science. 2017; 358(6359):58–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar C, Kocks C, Rajewsky N, Zinzen RP. The drosophila embryo at single-cell transcriptome resolution. Science. 2017; 358(6360):194–9.
Article
CAS
PubMed
Google Scholar
Kim K-T, Lee HW, Lee H-O, Kim SC, Seo YJ, Chung W, Eum HH, Nam D-H, Kim J, Joo KM, Park W-Y. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol. 2015; 16:127.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014; 11(7):740–2. https://doi.org/10.1038/nmeth.2967.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, McElrath MJ, Prlic M, Linsley PS, Gottardo R. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015; 16. https://doi.org/10.1186/s13059-015-0844-5. Accessed 27 Mar 2019.
Soneson C, Robinson MD. Bias, robustness and scalability in single-cell differential expression analysis. Nat Methods. 2018; 15(4):255–61. https://doi.org/10.1038/nmeth.4612.
Article
CAS
PubMed
Google Scholar
Eling N, Richard AC, Richardson S, Marioni JC, Vallejos CA. Correcting the mean-variance dependency for differential variability testing using single-cell RNA sequencing data. Cell Syst. 2018; 7(3):284–29412. https://doi.org/10.1016/j.cels.2018.06.011. Accessed 27 Mar 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campbell KR, Yau C. Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data. Nat Commun. 2018; 9(1):2442. https://doi.org/10.1038/s41467-018-04696-6. Accessed 27 Mar 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
van den Berge K, Bezieux HRD, Street K, Saelens W, Cannoodt R, Saeys Y, Dudoit S, Clement L. Trajectory-based differential expression analysis for single-cell sequencing data. bioRxiv. 2019:623397. https://doi.org/10.1101/623397. Accessed 03 May 2019.
Korthauer KD, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R, Kendziorski C. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol. 2016; 17(1):222. https://doi.org/10.1186/s13059-016-1077-y.
Article
PubMed
PubMed Central
CAS
Google Scholar
L. Lun A. T, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016; 17(1):75. https://doi.org/10.1186/s13059-016-0947-7. Accessed 23 Oct 2019.
Article
PubMed Central
CAS
Google Scholar
Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, Wan E, Wong S, Byrnes L, Lanata C, Gate R, Mostafavi S, Marson A, Zaitlen N, Criswell LA, Ye CJ. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat Biotechnol. 2018; 36(1):89–94. https://doi.org/10.1038/nbt.4042. Accessed 27 Mar 2019.
Article
CAS
PubMed
Google Scholar
Crowell HL, Soneson C, Germain P-L, Calini D, Collin L, Raposo C, Malhotra D, Robinson MD. On the discovery of population-specific state transitions from multi-sample multi-condition single-cell RNA sequencing data. bioRxiv. 2019:713412. https://doi.org/10.1101/713412. Accessed 23 Oct 2019.
Tung P-Y, Blischak JD, Hsiao CJ, Knowles DA, Burnett JE, Pritchard JK, Gilad Y. Batch effects and the effective design of single-cell gene expression studies. Sci Rep. 2017; 7:39921. https://doi.org/10.1038/srep39921. Accessed 23 Oct 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vavoulis DV, Francescatto M, Heutink P, Gough J. DGEclust: differential expression analysis of clustered count data. Genome Biol. 2015; 16:39.
Article
PubMed
PubMed Central
Google Scholar
Reid S, Taylor J, Tibshirani R. A general framework for estimation and inference from clusters of features. J Am Stat Assoc. 2018; 113(521):280–93.
Article
CAS
Google Scholar
Zhang JM, Kamath GM, Tse DN. Valid post-clustering differential analysis for single-cell RNA-Seq. bioRxiv. 2019:463265. https://doi.org/10.1101/463265. Accessed 09 July 2019.
Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015; 16(3):133.
Article
CAS
PubMed
Google Scholar
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018; 36(5):411–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haghverdi L, Lun ATL, Morgan MD, Marioni JC. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol. 2018; 36(5):421–7. https://doi.org/10.1038/nbt.4091.
Article
CAS
PubMed
PubMed Central
Google Scholar
Manno GL, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lönnerberg P, Furlan A, Fan J, Borm LE, Liu Z, Bruggen DV, Guo J, He X, Barker R, Sundström E, Castelo-Branco G, Cramer P, Adameyko I, Linnarsson S, Kharchenko PV. RNA velocity of single cells. Nature. 2018; 560(7719):494. https://doi.org/10.1038/s41586-018-0414-6. Accessed 28 Mar 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lun ATL, Richard AC, Marioni JC. Testing for differential abundance in mass cytometry data. Nat. Methods. 2017; 14(7):707–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP. Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A. 2014; 111(26):2770–7.
Article
CAS
Google Scholar
Weber LM, Nowicka M, Soneson C, Robinson MD. diffcyt: differential discovery in high-dimensional cytometry via high-resolution clustering. bioRxiv. 2018:349738. https://doi.org/10.1101/349738. Accessed 28 Mar 2019.
Nowicka M, Krieg C, Weber LM, Hartmann FJ, Guglietta S, Becher B, Levesque MP, Robinson MD. CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Res. 2017; 6:748.
Article
PubMed
CAS
Google Scholar
Arvaniti E, Claassen M. Sensitive detection of rare disease-associated cell subsets via representation learning. Nat Commun. 2017; 8(1):1–10. https://doi.org/10.1038/ncomms14825. Accessed 23 Oct 2019.
Article
CAS
Google Scholar
Duò A, Robinson MD, Soneson C. A systematic performance evaluation of clustering methods for single-cell RNA-seq data. F1000Res. 2018; 7:1141. https://doi.org/10.12688/f1000research.15666.2.
Article
PubMed
CAS
Google Scholar
Freytag S, Tian L, Lönnstedt I, Ng M, Bahlo M. Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data. F1000Research. 2018; 7. https://doi.org/10.12688/f1000research.15809.2. Accessed 07 Feb 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet. 2019:1. https://doi.org/10.1038/s41576-018-0088-9. Accessed 03 Apr 2019.
Article
CAS
PubMed
Google Scholar
Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee C, Furlan SN, Steemers FJ, Adey A, Waterston RH, Trapnell C, Shendure J. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science. 2017; 357(6352):661–7. https://doi.org/10.1126/science.aam8940. Accessed 03 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fincher CT, Wurtzel O, Hoog TD, Kravarik KM, Reddien PW. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science. 2018; 360(6391):1736. https://doi.org/10.1126/science.aaq1736. Accessed 03 Apr 2019.
Article
CAS
Google Scholar
Plass M, Solana J, Wolf FA, Ayoub S, Misios A, Glažar P, Obermayer B, Theis FJ, Kocks C, Rajewsky N. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science. 2018; 360(6391):1723. https://doi.org/10.1126/science.aaq1723. Accessed 03 Apr 2019.
Article
CAS
Google Scholar
Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar C, Kocks C, Rajewsky N, Zinzen RP. The Drosophila embryo at single-cell transcriptome resolution. Science. 2017; 358(6360):194–9. https://doi.org/10.1126/science.aan3235. Accessed 03 Apr 2019.
Article
CAS
PubMed
Google Scholar
Farrell JA, Wang Y, Riesenfeld SJ, Shekhar K, Regev A, Schier AF. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science. 2018; 360(6392):3131. https://doi.org/10.1126/science.aar3131. Accessed 03 Apr 2019.
Article
CAS
Google Scholar
Wagner DE, Weinreb C, Collins ZM, Briggs JA, Megason SG, Klein AM. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science. 2018; 360(6392):981–7. https://doi.org/10.1126/science.aar4362. Accessed 03 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Briggs JA, Weinreb C, Wagner DE, Megason S, Peshkin L, Kirschner MW, Klein AM. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science. 2018; 360(6392):5780. https://doi.org/10.1126/science.aar5780. Accessed 03 Apr 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, Graybuck LT, Peeler DJ, Mukherjee S, Chen W, Pun SH, Sellers DL, Tasic B, Seelig G. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science. 2018; 360(6385):176–82. URL https://doi.org/10.1126/science.aam8999. Accessed 03 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, Bien E, Baum M, Bortolin L, Wang S, Goeva A, Nemesh J, Kamitaki N, Brumbaugh S, Kulp D, McCarroll SA. Molecular diversity and specializations among the cells of the adult mouse brain. Cell. 2018; 174(4):1015–103016. https://doi.org/10.1016/j.cell.2018.07.028. Accessed 03 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, Häring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linnarsson S. Molecular architecture of the mouse nervous system. Cell. 2018; 174(4):999–101422. https://doi.org/10.1016/j.cell.2018.06.021. Accessed 03 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tabula Muris Consortium T. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018; 562(7727):367. https://doi.org/10.1038/s41586-018-0590-4. Accessed 03 Apr 2019.
Article
CAS
Google Scholar
Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F, Huang D, Xu Y, Huang W, Jiang M, Jiang X, Mao J, Chen Y, Lu C, Xie J, Fang Q, Wang Y, Yue R, Li T, Huang H, Orkin SH, Yuan G-C, Chen M, Guo G. Mapping the mouse cell atlas by Microwell-Seq. Cell. 2018; 172(5):1091–110717.
Article
CAS
PubMed
Google Scholar
Schiller HB, Montoro DT, Simon LM, Rawlins EL, Meyer KB, Strunz M, Vieira Braga F, Timens W, Koppelman GH, Budinger GRS, Burgess JK, Waghray A, van den Berge M, Theis FJ, Regev A, Kaminski N, Rajagopal J, Teichmann SA, Misharin AV, Nawijn MC. The Human Lung Cell Atlas - a high-resolution reference map of the human lung in health and disease. Am J Respir Cell Mol Biol. 2019. https://doi.org/10.1165/rcmb.2018-0416TR. Accessed 29 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lieberman Y, Rokach L, Shay T. CaSTLe – classification of single cells by transfer learning: harnessing the power of publicly available single cell RNA sequencing experiments to annotate new experiments. PLoS ONE. 2018; 13(10):0205499. https://doi.org/10.1371/journal.pone.0205499. Accessed 03 Apr 2019.
Article
CAS
Google Scholar
Srivastava D, Iyer A, Kumar V, Sengupta D. CellAtlasSearch: a scalable search engine for single cells. Nucleic Acids Res. 2018; 46(W1):141–7. https://doi.org/10.1093/nar/gky421. Accessed 03 Apr 2019.
Article
CAS
Google Scholar
Cao Z-J, Wei L, Lu S, Yang D-C, Gao G. Cell BLAST: searching large-scale scRNA-seq database via unbiased cell embedding. bioRxiv. 2019:587360. https://doi.org/10.1101/587360. Accessed 03 Apr 2019.
DePasquale EA, Ferchen K, Hay S, Grimes HL, Salomonis N. cellHarmony: cell-level matching and comparison of single-cell transcriptomes. bioRxiv. 2019:412080. https://doi.org/10.1101/412080. Accessed 04 Apr 2019.
Kanter J. K. d., Lijnzaad P, Candelli T, Margaritis T, Holstege F. CHETAH: a selective, hierarchical cell type identification method for single-cell RNA sequencing. bioRxiv. 2019:558908. https://doi.org/10.1101/558908. Accessed 01 Apr 2019.
Sato K, Tsuyuzaki K, Shimizu K, Nikaido I. CellFishing.jl: an ultrafast and scalable cell search method for single-cell RNA sequencing. Genome Biol. 2019; 20(1):31. https://doi.org/10.1186/s13059-019-1639-x. Accessed 03 Apr 2019.
Article
PubMed
PubMed Central
Google Scholar
Zhang AW, O’Flanagan C, Chavez E, Lim JL, McPherson A, Wiens M, Walters P, Chan T, Hewitson B, Lai D, Mottok A, Sarkozy C, Chong L, Aoki T, Wang X, Weng AP, McAlpine JN, Aparicio S, Steidl C, Campbell KR, Shah SP. Probabilistic cell type assignment of single-cell transcriptomic data reveals spatiotemporal microenvironment dynamics in human cancers. bioRxiv. 2019:521914. https://doi.org/10.1101/521914. Accessed 12 Mar 2019.
Abdelaal T, Michielsen L, Cats D, Hoogduin D, Mei H, Reinders MJT, Mahfouz A. A comparison of automatic cell identification methods for single-cell RNA sequencing data. Genome Biol. 2019; 20(1):194. https://doi.org/10.1186/s13059-019-1795-z. Accessed 23 Oct 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chester C, Maecker HT. Algorithmic tools for mining High-Dimensional cytometry data. J Immunol. 2015; 195(3):773–9.
Article
CAS
PubMed
Google Scholar
Weber LM, Robinson MD. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytom A. 2016; 89(12):1084–96. https://doi.org/10.1002/cyto.a.23030. Accessed 30 Apr 2019.
Article
CAS
Google Scholar
Saeys Y, Van Gassen S, Lambrecht BN. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol. 2016; 16(7):449–62. https://doi.org/10.1038/nri.2016.56. Accessed 30 Apr 2019.
Article
CAS
PubMed
Google Scholar
Guilliams M, Dutertre C-A, Scott C, McGovern N, Sichien D, Chakarov S, Van Gassen S, Chen J, Poidinger M, De Prijck S, Tavernier S, Low I, Irac S, Mattar C, Sumatoh H, Low G, Chung T, Chan D, Tan K, Hon T, Fossum E, Bogen B, Choolani M, Chan J, Larbi A, Luche H, Henri S, Saeys Y, Newell E, Lambrecht B, Malissen B, Ginhoux F. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity. 2016; 45(3):669–84. https://doi.org/10.1016/j.immuni.2016.08.015. Accessed 30 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hon C-C, Shin JW, Carninci P, Stubbington MJT. The Human Cell Atlas: technical approaches and challenges. Brief Funct Genom. 2018; 17(4):283–94. https://doi.org/10.1093/bfgp/elx029. Accessed 05 June 2019.
Article
CAS
Google Scholar
Spanjaard B, Hu B, Mitic N, Olivares-Chauvet P, Janjuha S, Ninov N, Junker JP. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat Biotechnol. 2018; 36(5):469–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kester L, van Oudenaarden A. Single-cell transcriptomics meets lineage tracing. Cell Stem Cell. 2018; 23(2):166–79. https://doi.org/10.1016/j.stem.2018.04.014. Accessed 20 Nov 2019.
Article
CAS
PubMed
Google Scholar
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32(4):381–6. https://doi.org/10.1038/nbt.2859.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell trajectory inference methods. Nat Biotechnol. 2019:1. https://doi.org/10.1038/s41587-019-0071-9. Accessed 30 Apr 2019.
Article
CAS
PubMed
Google Scholar
Ji Z, Ji H. TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 2016; 44(13):117. https://doi.org/10.1093/nar/gkw430.
Article
CAS
Google Scholar
Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, Trapnell C. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods. 2017; 14(10):979–82. https://doi.org/10.1038/nmeth.4402. Accessed 30 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen H, Albergante L, Hsu JY, Lareau CA, Bosco GL, Guan J, Zhou S, Gorban AN, Bauer DE, Aryee MJ, Langenau DM, Zinovyev A, Buenrostro JD, Yuan G-C, Pinello L. Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM. Nat Commun. 2019; 10(1):1903. https://doi.org/10.1038/s41467-019-09670-4. Accessed 30 Apr 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rizvi AH, Camara PG, Kandror EK, Roberts TJ, Schieren I, Maniatis T, Rabadan R. Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nat Biotechnol. 2017; 35(6):551–60. https://doi.org/10.1038/nbt.3854.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haghverdi L, Büttner M, Wolf FA, Buettner F, Theis FJ. Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods. 2016; 13(10):845–8. https://doi.org/10.1038/nmeth.3971. Accessed 30 Apr 2019.
Article
CAS
PubMed
Google Scholar
Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P, Choi K, Bendall S, Friedman N, Pe’er D. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol. 2016; 34(6):637–45. https://doi.org/10.1038/nbt.3569. Accessed 30 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schiebinger G, Shu J, Tabaka M, Cleary B, Subramanian V, Solomon A, Liu S, Lin S, Berube P, Lee L, Chen J, Brumbaugh J, Rigollet P, Hochedlinger K, Jaenisch R, Regev A, Lander ES. Reconstruction of developmental landscapes by optimal-transport analysis of single-cell gene expression sheds light on cellular reprogramming. bioRxiv. 2017:191056. https://doi.org/10.1101/191056. Accessed 30 Apr 2019.
Weinreb C, Wolock S, Tusi BK, Socolovsky M, Klein AM. Fundamental limits on dynamic inference from single-cell snapshots. Proc Natl Acad Sci. 2018; 115(10):2467–76. https://doi.org/10.1073/pnas.1714723115. Accessed 30 Apr 2019.
Article
CAS
Google Scholar
Campbell KR, Yau C. Order under uncertainty: robust differential expression analysis using probabilistic models for pseudotime inference. PLoS Comput Biol. 2016; 12(11):1005212. https://doi.org/10.1371/journal.pcbi.1005212. Accessed 09 July 2019.
Article
CAS
Google Scholar
Reid JE, Wernisch L. Pseudotime estimation: deconfounding single cell time series. Bioinformatics. 2016; 32(19):2973–80. https://doi.org/10.1093/bioinformatics/btw372. Accessed 09 July 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmed S, Rattray M, Boukouvalas A. GrandPrix: scaling up the Bayesian GPLVM for single-cell data. Bioinformatics. 2019; 35(1):47–54. https://doi.org/10.1093/bioinformatics/bty533. Accessed 09 July 2019.
Article
CAS
PubMed
Google Scholar
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015; 161(5):1202–14. https://doi.org/10.1016/j.cell.2015.05.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015; 161(5):1187–201. https://doi.org/10.1016/j.cell.2015.04.044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017; 8:14049. https://doi.org/10.1038/ncomms14049. Accessed 30 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Angermueller C, Lee HJ, Reik W, Stegle O. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 2017; 18(1):67. https://doi.org/10.1186/s13059-017-1189-z. Accessed 30 Apr 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cusanovich DA, Reddington JP, Garfield DA, Daza RM, Aghamirzaie D, Marco-Ferreres R, Pliner HA, Christiansen L, Qiu X, Steemers FJ, Trapnell C, Shendure J, Furlong EEM. The cis-regulatory dynamics of embryonic development at single-cell resolution. Nature. 2018; 555(7697):538–42. https://doi.org/10.1038/nature25981. Accessed 30 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ, Majeti R, Chang HY, Greenleaf WJ. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell. 2018; 173(6):1535–154816. https://doi.org/10.1016/j.cell.2018.03.074.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Boer CG, Regev A. BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization. BMC Bioinformatics. 2018; 19(1):253. https://doi.org/10.1186/s12859-018-2255-6. Accessed 30 Apr 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pliner HA, Packer JS, McFaline-Figueroa JL, Cusanovich DA, Daza RM, Aghamirzaie D, Srivatsan S, Qiu X, Jackson D, Minkina A, Adey AC, Steemers FJ, Shendure J, Trapnell C. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol Cell. 2018; 71(5):858–8718. https://doi.org/10.1016/j.molcel.2018.06.044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018; 36(5):411–20. https://doi.org/10.1038/nbt.4096. Accessed 30 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Welch J, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko E. Integrative inference of brain cell similarities and differences from single-cell genomics. bioRxiv. 2018:459891. https://doi.org/10.1101/459891. Accessed 30 Apr 2019.
Crosetto N, Bienko M, van Oudenaarden A. Spatially resolved transcriptomics and beyond. Nat Rev Genet. 2015; 16(1):57–66.
Article
CAS
PubMed
Google Scholar
Strell C, Hilscher MM, Laxman N, Svedlund J, Wu C, Yokota C, Nilsson M. Placing RNA in context and space - methods for spatially resolved transcriptomics. FEBS J. 2018; 286(8):1468–81. https://doi.org/10.1111/febs.14435.
Article
PubMed
CAS
Google Scholar
Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, Rubinstein ND, Hao J, Regev A, Dulac C, Zhuang X. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science. 2018; 362(6416):5324. https://doi.org/10.1126/science.aau5324. Accessed 27 Mar 2019.
Article
CAS
Google Scholar
Tanay A, Regev A. Scaling single-cell genomics from phenomenology to mechanism. Nature. 2017; 541(7637):331–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M, Mollbrink A, Linnarsson S, Codeluppi S, Borg k., Pontén F, Costea PI, Sahlén P, Mulder J, Bergmann O, Lundeberg J, Frisén J. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science (New York). 2016; 353(6294):78–82. https://doi.org/10.1126/science.aaf2403.
Article
CAS
Google Scholar
Medaglia C, Giladi A, Stoler-Barak L, Giovanni MD, Salame TM, Biram A, David E, Li H, Iannacone M, Shulman Z, Amit I. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science. 2017; 358(6370):1622–6. https://doi.org/10.1126/science.aao4277. Accessed 27 Mar 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch J, Chen LM, Chen F, Macosko EZ. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019; 363(6434):1463–7. https://doi.org/10.1126/science.aaw1219. Accessed 16 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, Wählby C, Nilsson M. In situ sequencing for RNA analysis in preserved tissue and cells. Nat Methods. 2013; 10(9):857–60. https://doi.org/10.1038/nmeth.2563. Accessed 10 Oct 2019.
Article
CAS
PubMed
Google Scholar
Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Ferrante TC, Terry R, Turczyk BM, Yang JL, Lee HS, Aach J, Zhang K, Church GM. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc. 2015; 10(3):442–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, Evans K, Liu C, Ramakrishnan C, Liu J, Nolan GP, Bava F-A, Deisseroth K. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science. 2018; 361(6400):5691. https://doi.org/10.1126/science.aat5691. Accessed 14 Oct 2019.
Article
CAS
Google Scholar
Lubeck E, Coskun AF, Zhiyentayev T, Ahmad M, Cai L. Single-cell in situ RNA profiling by sequential hybridization. Nat Methods. 2014; 11(4):360–1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015; 348(6233):6090.
Article
CAS
Google Scholar
Moffitt JR, Hao J, Bambah-Mukku D, Lu T, Dulac C, Zhuang X. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc Natl Acad Sci U S A. 2016; 113(50):14456–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shah S, Lubeck E, Zhou W, Cai L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron. 2016; 92(2):342–57. https://doi.org/10.1016/j.neuron.2016.10.001. Accessed 10 Oct 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eng C-HL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, Yun J, Cronin C, Karp C, Yuan G-C, Cai L. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature. 2019; 568(7751):235. URL https://doi.org/10.1038/s41586-019-1049-y. Accessed 16 Apr 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Codeluppi S, Borm LE, Zeisel A, Manno GL, Lunteren JAV, Svensson CI, Linnarsson S. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat Methods. 2018; 15(11):932–5. https://doi.org/10.1038/s41592-018-0175-z. Accessed 14 Oct 2019.
Article
CAS
PubMed
Google Scholar
Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, Schüffler P. J, Grolimund D, Buhmann JM, Brandt S, Varga Z, Wild PJ, Günther D, Bodenmiller B. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014; 11(4):417–22. https://doi.org/10.1038/nmeth.2869. Accessed 27 Mar 2019.
Article
CAS
PubMed
Google Scholar
Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, Levenson RM, Lowe JB, Liu SD, Zhao S, Natkunam Y, Nolan GP. Multiplexed ion beam imaging of human breast tumors. Nat Med. 2014; 20(4):436–42. https://doi.org/10.1038/nm.3488. Accessed 15 Nov 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin J-R, Izar B, Wang S, Yapp C, Mei S, Shah PM, Santagata S, Sorger PK. Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes. eLife. 2018; 7:31657. https://doi.org/10.7554/eLife.31657. Accessed 14 Oct 2019.
Article
Google Scholar
Saka SK, Wang Y, Kishi JY, Zhu A, Zeng Y, Xie W, Kirli K, Yapp C, Cicconet M, Beliveau BJ, Lapan SW, Yin S, Lin M, Boyden ES, Kaeser PS, Pihan G, Church GM, Yin P. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat Biotechnol. 2019; 37(9):1080–90. https://doi.org/10.1038/s41587-019-0207-y. Accessed 14 Oct 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, Vazquez G, Black S, Nolan GP. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell. 2018; 174(4):968–98115. https://doi.org/10.1016/j.cell.2018.07.010. Accessed 14 Oct 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merritt CR, Ong GT, Church S, Barker K, Geiss G, Hoang M, Jung J, Liang Y, McKay-Fleisch J, Nguyen K, Sorg K, Sprague I, Warren C, Warren S, Zhou Z, Zollinger DR, Dunaway DL, Mills GB, Beechem JM. High multiplex, digital spatial profiling of proteins and RNA in fixed tissue using genomic detection methods. bioRxiv. 2019:559021. https://doi.org/10.1101/559021. Accessed 01 Aug 2019.
Van TM, Blank CU. A user’s perspective on GeoMxTM digital spatial profiling. Immuno-Oncol Technol. 2019; 1:11–18. https://doi.org/10.1016/j.iotech.2019.05.001. Accessed 01 Aug 2019.
Article
Google Scholar
Kiselev VY, Yiu A, Hemberg M. scmap: projection of single-cell RNA-seq data across data sets. Nat Methods. 2018; 15(5):359–62. https://doi.org/10.1038/nmeth.4644. Accessed 27 Mar 2019.
Article
CAS
PubMed
Google Scholar
Shivanandan A, Unnikrishnan J, Radenovic A. On characterizing protein spatial clusters with correlation approaches. Sci Rep. 2016; 6:31164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shah S, Lubeck E, Zhou W, Cai L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron. 2016; 92(2):342–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edsgärd D, Johnsson P, Sandberg R. Identification of spatial expression trends in single-cell gene expression data. Nat Methods. 2018; 15(5):339–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jacobsen M. Point process theory and applications: marked point and piecewise deterministic processes. Basel: Springer Science & Business Media; 2005.
Google Scholar
Svensson V, Teichmann SA, Stegle O. SpatialDE: identification of spatially variable genes. Nat Methods. 2018; 15(5):343–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fridman WH, Galon J, Dieu-Nosjean M-C, Cremer I, Fisson S, Damotte D, Pagès F, Tartour E, Sautès-Fridman C. Immune infiltration in human cancer: prognostic significance and disease control In: Dranoff G, editor. Cancer Immunology and Immunotherapy. Berlin, Heidelberg: Springer: 2011. p. 1–24.
Google Scholar
Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 2012; 72(19):4875–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cretu A, Brooks PC. Impact of the non-cellular tumor microenvironment on metastasis: potential therapeutic and imaging opportunities. J Cell Physiol. 2007; 213(2):391–402.
Article
CAS
PubMed
Google Scholar
Köster J, Brown M, Liu XS. A Bayesian model for single cell transcript expression analysis on MERFISH data. Bioinformatics. 2019; 35(6):995–1001. https://doi.org/10.1093/bioinformatics/bty718. Accessed 15 Nov 2019.
Article
PubMed
CAS
Google Scholar
McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017; 168(4):613–28.
Article
CAS
PubMed
Google Scholar
de Bourcy CFA, De Vlaminck I, Kanbar JN, Wang J, Gawad C, Quake SR. A quantitative comparison of single-cell whole genome amplification methods. PLoS ONE. 2014; 9(8):105585.
Article
CAS
Google Scholar
Hou Y, Wu K, Shi X, Li F, Song L, Wu H, Dean M, Li G, Tsang S, Jiang R, Zhang X, Li B, Liu G, Bedekar N, Lu N, Xie G, Liang H, Chang L, Wang T, Chen J, Li Y, Zhang X, Yang H, Xu X, Wang L, Wang J. Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing. Gigascience. 2015; 4:37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang L, Ma F, Chapman A, Lu S, Xie XS. Single-cell whole-genome amplification and sequencing: methodology and applications. Annu Rev Genomics Hum Genet. 2015; 16:79–102.
Article
CAS
PubMed
Google Scholar
Estévez-Gómez N, Prieto T, Guillaumet-Adkins A, Heyn H, Prado-López S, Posada D. Comparison of single-cell whole-genome amplification strategies. bioRxiv. 2018:443754. https://doi.org/10.1101/443754. Accessed 27 July 2019.
Telenius H, Carter NP, Bebb CE, Nordenskjöld M, Ponder BA, Tunnacliffe A. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992; 13(3):718–25.
Article
CAS
PubMed
Google Scholar
Zhang L, Cui X, Schmitt K, Hubert R, Navidi W, Arnheim N. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A. 1992; 89(13):5847–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klein CA, Schmidt-Kittler O, Schardt JA, Pantel K, Speicher MR, Riethmüller G. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci U S A. 1999; 96(8):4494–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arneson N, Hughes S, Houlston R, Done S. Whole-genome amplification by improved primer extension preamplification PCR (I-PEP-PCR). Cold Spring Harb Protocol. 2008; 2008(1):4921. https://doi.org/10.1101/pdb.prot4921. Accessed 15 Nov 2019.
Google Scholar
Blanco L, Bernad A, Lázaro JM, Martín G, Garmendia C, Salas M. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase: symmetrical mode of DNA replication. J Biol Chem. 1989; 264(15):8935–40.
CAS
PubMed
Google Scholar
Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm M, Lasken RS. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A. 2002; 99(8):5261–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spits C, Le Caignec C, De Rycke M, Van Haute L, Van Steirteghem A, Liebaers I, Sermon K. Whole-genome multiple displacement amplification from single cells. Nat Protoc. 2006; 1(4):1965–70.
Article
CAS
PubMed
Google Scholar
Paez JG, Lin M, Beroukhim R, Lee JC, Zhao X, Richter DJ, Gabriel S, Herman P, Sasaki H, Altshuler D, Li C, Meyerson M, Sellers WR. Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res. 2004; 32(9):71.
Article
CAS
Google Scholar
Spits C, Le Caignec C, De Rycke M, Van Haute L, Van Steirteghem A, Liebaers I, Sermon K. Optimization and evaluation of single-cell whole-genome multiple displacement amplification. Hum Mutat. 2006; 27(5):496–503.
Article
CAS
PubMed
Google Scholar
Bäumer C, Fisch E, Wedler H, Reinecke F, Korfhage C. Exploring DNA quality of single cells for genome analysis with simultaneous whole-genome amplification. Sci Rep. 2018; 8(1):1–10. https://doi.org/10.1038/s41598-018-25895-7. Accessed 24 Oct 2019.
Article
CAS
Google Scholar
Picher ÁJ, Budeus B, Wafzig O, Krüger C, García-Gómez S, Martínez-Jiménez MI, Díaz-Talavera A, Weber D, Blanco L, Schneider A. TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol. Nat Commun. 2016; 7:13296. https://doi.org/10.1038/ncomms13296. Accessed 07 Mar 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zafar H, Wang Y, Nakhleh L, Navin N, Chen K. Monovar: single-nucleotide variant detection in single cells. Nat Methods. 2016; 13(6):505–7. https://doi.org/10.1038/nmeth.3835. Accessed 28 Mar 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong X, Zhang L, Milholland B, Lee M, Maslov AY, Wang T, Vijg J. Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. Nat Methods. 2017; 14(5):491–3. https://doi.org/10.1038/nmeth.4227. Accessed 28 Mar 2019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luquette LJ, Bohrson CL, Sherman MA, Park PJ. Identification of somatic mutations in single cell DNA-seq using a spatial model of allelic imbalance. Nat Commun. 2019; 10(1):1–14. https://doi.org/10.1038/s41467-019-11857-8. Accessed 02 Sept 2019.
Article
CAS
Google Scholar
Roth A, McPherson A, Laks E, Biele J, Yap D, Wan A, Smith MA, Nielsen CB, McAlpine JN, Aparicio S, Bouchard-Côté A, Shah SP. Clonal genotype and population structure inference from single-cell tumor sequencing. Nat Methods. 2016; 13(7):573–6.
Article
CAS
PubMed
Google Scholar
Zafar H, Navin N, Chen K, Nakhleh L. SiCloneFit: Bayesian inference of population structure, genotype, and phylogeny of tumor clones from single-cell genome sequencing data: Cold Spring Harbor Laboratory; 2018. https://doi.org/10.1101/394262.
Singer J, Kuipers J, Jahn K, Beerenwinkel N. Single-cell mutation identification via phylogenetic inference. Nat Commun. 2018; 9(1):5144. https://doi.org/10.1038/s41467-018-07627-7. Accessed 28 Mar 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Poirion O, Zhu X, Ching T, Garmire LX. Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage. Nat Commun. 2018; 9(1):4892. https://doi.org/10.1038/s41467-018-07170-5. Accessed 28 Mar 2019.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bakker B, Taudt A, Belderbos ME, Porubsky D, Spierings DCJ, de Jong TV, Halsema N, Kazemier HG, Hoekstra-Wakker K, Bradley A, de Bont ESJM, van den Berg A, Guryev V, Lansdorp PM, Colomé-Tatché M, Foijer F. Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies. Genome Biol. 2016; 17:115. https://doi.org/10.1186/s13059-016-0971-7. Accessed 14 Feb 2017.
Article
PubMed
PubMed Central
CAS
Google Scholar
Garvin T, Aboukhalil R, Kendall J, Baslan T, Atwal GS, Hicks J, Wigler M, Schatz MC. Interactive analysis and assessment of single-cell copy-number variations. Nat Methods. 2015; 12(11):1058–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan J, Lee H-O, Lee S, Ryu D-E, Lee S, Xue C, Kim SJ, Kim K, Barkas N, Park PJ, Park W-Y, Kharchenko PV. Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data. Genome Res. 2018; 28(8):1217–27.
Article
CAS
PubMed
PubMed Central