Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108(Suppl):4516–22.
Article
CAS
PubMed
Google Scholar
Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol. 2012;21:2045–50.
Article
CAS
PubMed
Google Scholar
Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK. Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol Evol. 2012;27:233–43.
Article
PubMed
PubMed Central
Google Scholar
Norman JM, Handley SA, Virgin HW. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology. 2014;146:1459–69.
Article
CAS
PubMed
Google Scholar
Marcelino VR, Verbruggen H. Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae. Sci Rep. 2016;6:31508.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piganeau G, Eyre-Walker A, Jancek S, Grimsley N, Moreau H. How and why DNA barcodes underestimate the diversity of microbial eukaryotes. PLoS One. 2011;6:e16342.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly. Brief Bioinform. 2019;20:1125–36.
Article
PubMed
Google Scholar
Scholz M, Ward DV, Pasolli E, Tolio T, Zolfo M, Asnicar F, et al. Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat Methods. 2016;13:435–8.
Article
CAS
PubMed
Google Scholar
Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12:902–3.
Article
CAS
PubMed
Google Scholar
Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Droge J, et al. Critical assessment of metagenome interpretation - a benchmark of metagenomics software. Nat Methods. 2017;14:1063–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol. 2019;17:95–109.
Article
CAS
PubMed
Google Scholar
Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17:377–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2016;15:R46.
Article
Google Scholar
Nasko DJ, Koren S, Phillippy AM, Treangen TJ. RefSeq database growth influences the accuracy of k-mer-based lowest common ancestor species identification. Genome Biol. 2018;19:165.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hawksworth DL, Lucking R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol. Spectr. 2017;5:79–95.
Article
Google Scholar
Clausen P, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics. 2018;19:307.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a web browser. BMC Bioinformatics. 2011;12:385.
Article
PubMed
PubMed Central
Google Scholar
Federhen S. The NCBI Taxonomy database. Nucleic Acids Res. 2012;40:D136–43.
Article
CAS
PubMed
Google Scholar
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizrachi I. GenBank: the nucleotide sequence database. The NCBI handbook [Internet], updated (2007).
Marcelino VR, Clausen PTLC, Buchman J, Wille M, Iredell JR, Meyer W, et al. CCMetagen GitHub repository. https://github.com/vrmarcelino/CCMetagen (2019).
Buchman J, Marcelino VR, Clausen PT, Wille M, Iredell JR, Meyer W, et al. CCMetagen Python Package Index. https://pypi.org/project/CCMetagen/ (2020).
Clausen PTLC, Marcelino VR, Buchman J, Wille M, Iredell JR, Meyer W, et al. CCMetagen webserver. https://cge.cbs.dtu.dk/services/ccmetagen/ (2019).
Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 2016;26:1721–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breitwieser FP, Baker DN, Salzberg SL. KrakenUniq: confident and fast metagenomics classification using unique k-mer counts. Genome Biol. 2018;19:1–10.
Article
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
Article
CAS
PubMed
Google Scholar
Ounit R, Wanamaker S, Close TJ, Lonardi S. CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers. BMC Genomics. 2015;16:236.
Article
PubMed
PubMed Central
CAS
Google Scholar
Freitas TA, Li PE, Scholz MB, Chain PS. Accurate read-based metagenome characterization using a hierarchical suite of unique signatures. Nucleic Acids Res. 2015;43:e69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM, Eisen JA. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ. 2014;2:e243.
Article
PubMed
PubMed Central
Google Scholar
Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9:811–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
McIntyre ABR, Ounit R, Afshinnekoo E, Prill RJ, Henaff E, Alexander N, et al. Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biol. 2017;18:182.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marcelino VR, Irinyi L, Eden J-S, Meyer W, Holmes EC, Sorrell TC. Metatranscriptomics as a tool to identify fungal species and subspecies in mixed communities – a proof of concept under laboratory conditions. IMA Fungus. 2019;10:8.
Article
Google Scholar
Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Strong MJ, Xu G, Morici L, Splinter Bon-Durant S, Baddoo M, Lin Z, et al. Microbial contamination in next generation sequencing: implications for sequence-based analysis of clinical samples. PLoS Path. 2014;10:e1004437.
Article
CAS
Google Scholar
Wille M, Eden JS, Shi M, Klaassen M, Hurt AC, Holmes EC. Virus-virus interactions and host ecology are associated with RNA virome structure in wild birds. Mol Ecol. 2018;27:5263–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marcelino VR, Wille M, Hurt AC, Gonzalez-Acuna D, Klaassen M, Schlub TE, et al. Meta-transcriptomics reveals a diverse antibiotic resistance gene pool in avian microbiomes. BMC Biol. 2019;17:31.
Article
PubMed
PubMed Central
Google Scholar
Moschetti G, Alfonzo A, Francesca N. Yeasts in birds. In: Buzzini P, Lachance M-A, Yurkov A, editors. Yeasts in natural ecosystems: diversity. Cham: Springer International Publishing; 2017. p. 435–54.
Chapter
Google Scholar
Evans RN, Prusso DC. Spore dispersal by birds. Mycologia. 1969;61:832–5.
Article
CAS
PubMed
Google Scholar
Nielsen K, De Obaldia AL, Heitman J. Cryptococcus neoformans mates on pigeon guano: implications for the realized ecological niche and globalization. Eukaryot Cell. 2007;6:949–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cafarchia C, Romito D, Iatta R, Camarda A, Montagna MT, Otranto D. Role of birds of prey as carriers and spreaders of Cryptococcus neoformans and other zoonotic yeasts. Med Mycol. 2006;44:485–92.
Article
CAS
PubMed
Google Scholar
Hubalek Z. Coincidence of fungal species associated with birds. Ecology. 1978;59:438–42.
Article
Google Scholar
Rosario I, Hermoso de Mendoza M, Deniz S, Soro G, Alamo I, Acosta B. Isolation of Cryptococcus species including C. neoformans from cloaca of pigeons. Mycoses. 2005;48:421–4.
Article
CAS
PubMed
Google Scholar
Hargreaves J, Brickle P, van West P. The fungal ecology of seabird nesting sites in the Falkland Islands indicates a niche for mycoparasites. Fungal Ecol. 2018;36:99–108.
Article
Google Scholar
Correia M, Heleno R, da Silva LP, Costa JM, Rodriguez-Echeverria S. First evidence for the joint dispersal of mycorrhizal fungi and plant diaspores by birds. New Phytol. 2019;222:1054–60.
Article
PubMed
Google Scholar
Saengkerdsub S, Anderson RC, Wilkinson HH, Kim WK, Nisbet DJ, Ricke SC. Identification and quantification of methanogenic Archaea in adult chicken ceca. Appl Environ Microbiol. 2007;73:353–6.
Article
CAS
PubMed
Google Scholar
Marcelino VR, Clausen PTLC, Buchman J, Wille M, Iredell JR, Meyer W, et al. CCMetagen tutorial. https://github.com/vrmarcelino/CCMetagen/tree/master/tutorial (2019).
Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, Eberhardt U, et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol. 2019;92:135–54.
Article
CAS
PubMed
Google Scholar
Vu D, Groenewald M, Szoke S, Cardinali G, Eberhardt U, Stielow B, et al. DNA barcoding analysis of more than 9 000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol. 2016;85:91–105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tedersoo L, Lindahl B. Fungal identification biases in microbiome projects. Environ Microbiol Rep. 2016;8:774–9.
Article
PubMed
Google Scholar
Ihrmark K, Bodeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region--evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.
Article
CAS
PubMed
Google Scholar
Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 2010;10:189.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marcelino VR, Holmes EC, Sorrell TC. The use of taxon-specific reference databases compromises metagenomic classification. BMC Genomics. 2020;21:184.
Article
Google Scholar
Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007;35:D61–5.
Article
CAS
PubMed
Google Scholar
Angly FE, Willner D, Rohwer F, Hugenholtz P, Tyson GW. Grinder: a versatile amplicon and shotgun sequence simulator. Nucleic Acids Res. 2012;40:e94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frazee AC, Jaffe AE, Langmead B, Leek JT. Polyester: simulating RNA-seq datasets with differential transcript expression. Bioinformatics. 2015;31:2778–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marcelino VR, Clausen PTLC, Buchman J, Wille M, Iredell JR, Meyer W, et al. Indexed reference databases for KMA and CCMetagen. https://doi.org/10.25910/5cc7cd40fca8e (2019).
Clausen PTLC, Marcelino VR, Buchman J, Wille M, Iredell JR, Meyer W, et al. Indexed reference databases for KMA and CCMetagen - mirror. http://www.cbs.dtu.dk/public/CGE/databases/CCMetagen/ (2019).
Marcelino VR, Clausen PTLC, Buchman J, Wille M, Iredell JR, Meyer W, et al. Zenodo repository of CCMetagen v 1.0.0. https://doi.org/10.5281/zenodo.3668497 (2020).