Gruber AR, Martin G, Keller W, Zavolan M. Means to an end: mechanisms of alternative polyadenylation of messenger RNA precursors. Wiley Interdiscip Rev RNA. 2014;5:183–96.
Article
CAS
PubMed
Google Scholar
Cheadle C, Fan J, Cho-Chung YS, Werner T, Ray J, Do L, Gorospe M, Becker KG. Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability. BMC Genomics. 2005;6:75.
Article
PubMed
PubMed Central
Google Scholar
Holt CE, Bullock SL. Subcellular mRNA localization in animal cells and why it matters. Science. 2009;326:1212–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin KC, Ephrussi A. mRNA localization: gene expression in the spatial dimension. Cell. 2009;136:719–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thompson B, Wickens M, Kimble J. 19 Translational Control in Development. Cold Spring Harbor Monograph Archive. 2007;48:507–44.
CAS
Google Scholar
Iwakawa HO, Tomari Y. The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends Cell Biol. 2015;25:651–65.
Article
CAS
PubMed
Google Scholar
Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015;22:22–33.
Article
CAS
PubMed
Google Scholar
Evans TC, Hunter CP. Translational control of maternal RNAs. (November 10, 2005), WormBook, ed. The C. elegans Research Community, WormBook. https://doi.org/10.1895/wormbook.1.34.1. http://www.wormbook.org.
Li J, Lu X. The emerging roles of 3′ untranslated regions in cancer. Cancer Lett. 2013;337:22–5.
Article
CAS
PubMed
Google Scholar
Lai EC. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002;30(4):363–4.
Article
CAS
PubMed
Google Scholar
Kuersten S, Goodwin EB. The power of the 3′ UTR: translational control and development. Nat Rev Genet. 2003;4:626–37.
Article
CAS
PubMed
Google Scholar
Kimble J. Molecular regulation of the mitosis/meiosis decision in multicellular organisms. Cold Spring Harb Perspect Biol. 2011;3:a002683.
Article
PubMed
PubMed Central
Google Scholar
Kim S, Spike C, Greenstein D. Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. In Germ Cell Development in C elegans. Springer; 2013: 277-320
Merritt C, Rasoloson D, Ko D, Seydoux G. 3′ UTRs are the primary regulators of gene expression in the C. elegans germline. Curr Biol. 2008;18:1476–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bukhari SI, Vasquez-Rifo A, Gagne D, Paquet ER, Zetka M, Robert C, Masson JY, Simard MJ. The microRNA pathway controls germ cell proliferation and differentiation in C. elegans. Cell Res. 2012;22:1034–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nousch M, Eckmann CR. Translational Control in the Caenorhabditis elegans Germ Line. In: Schedl T, editor. Germ Cell Development in C elegans. Springer: New York; 2013. p. 205–47.
Chapter
Google Scholar
Lee MH, Schedl T. RNA-binding proteins. WormBook 2006:1-13
Crittenden SL, Eckmann CR, Wang L, Bernstein DS, Wickens M, Kimble J. Regulation of the mitosis/meiosis decision in the Caenorhabditis elegans germline. Philos Trans R Soc Lond B Biol Sci. 2003;358:1359–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones AR, Francis R, Schedl T. GLD-1, a Cytoplasmic Protein Essential for Oocyte Differentiation, Shows Stage-and Sex-Specific Expression during Caenorhabditis elegans Germline Development. Dev Biol. 1996;180:165–83.
Article
CAS
PubMed
Google Scholar
Francis R, Barton MK, Kimble J, Schedl T. gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics. 1995;139:579–606.
CAS
PubMed
PubMed Central
Google Scholar
Jungkamp AC, Stoeckius M, Mecenas D, Grun D, Mastrobuoni G, Kempa S, Rajewsky N. In vivo and transcriptome-wide identification of RNA binding protein target sites. Mol Cell. 2011;44:828–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brummer A, Kishore S, Subasic D, Hengartner M, Zavolan M. Modeling the binding specificity of the RNA-binding protein GLD-1 suggests a function of coding region-located sites in translational repression. RNA. 2013;19:1317–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheckel C, Gaidatzis D, Wright JE, Ciosk R. Genome-wide analysis of GLD-1-mediated mRNA regulation suggests a role in mRNA storage. PLoS Genet. 2012;8:e1002742.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suh N, Crittenden SL, Goldstrohm A, Hook B, Thompson B, Wickens M, Kimble J. FBF and its dual control of gld-1 expression in the Caenorhabditis elegans germline. Genetics. 2009;181:1249–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kershner AM, Kimble J. Genome-wide analysis of mRNA targets for Caenorhabditis elegans FBF, a conserved stem cell regulator. Proc Natl Acad Sci U S A. 2010;107:3936–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baugh LR, Hill AA, Slonim DK, Brown EL, Hunter CP. Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development. 2003;130:889–900.
Article
CAS
PubMed
Google Scholar
Stoeckius M, Grun D, Kirchner M, Ayoub S, Torti F, Piano F, Herzog M, Selbach M, Rajewsky N. Global characterization of the oocyte-to-embryo transition in Caenorhabditis elegans uncovers a novel mRNA clearance mechanism. EMBO J. 2014;33:1751–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lesch BJ, Page DC. Genetics of germ cell development. Nat Rev Genet. 2012;13:781–94.
Article
CAS
PubMed
Google Scholar
Robertson S, Lin R. The Oocyte-to-Embryo Transition. In: Schedl T, editor. Germ Cell Development in C elegans. New York: Springer; 2013. p. 351–72.
Chapter
Google Scholar
Elkon R, Ugalde AP, Agami R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet. 2013;14:496–506.
Article
CAS
PubMed
Google Scholar
Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell. 2011;43:853–66.
Article
PubMed
PubMed Central
Google Scholar
Mayr C, Bartel DP. Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138:673–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta I, Clauder-Munster S, Klaus B, Jarvelin AI, Aiyar RS, Benes V, Wilkening S, Huber W, Pelechano V, Steinmetz LM. Alternative polyadenylation diversifies post-transcriptional regulation by selective RNA-protein interactions. Mol Syst Biol. 2014;10:719.
Article
PubMed
PubMed Central
Google Scholar
Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456:470–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji Z, Lee JY, Pan Z, Jiang B, Tian B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci U S A. 2009;106:7028–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miura P, Shenker S, Andreu-Agullo C, Westholm JO, Lai EC. Widespread and extensive lengthening of 3′ UTRs in the mammalian brain. Genome Res. 2013;23:812–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smibert P, Miura P, Westholm JO, Shenker S, May G, Duff MO, Zhang D, Eads BD, Carlson J, Brown JB, et al. Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Rep. 2012;1:277–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haenni S, Ji Z, Hoque M, Rust N, Sharpe H, Eberhard R, Browne C, Hengartner MO, Mellor J, Tian B, Furger A. Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3′-end-seq. Nucleic Acids Res. 2012;40:6304–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blazie SM, Babb C, Wilky H, Rawls A, Park JG, Mangone M. Comparative RNA-Seq analysis reveals pervasive tissue-specific alternative polyadenylation in Caenorhabditis elegans intestine and muscles. BMC Biol. 2015;13:4.
Article
PubMed
PubMed Central
Google Scholar
Ozsolak F, Kapranov P, Foissac S, Kim SW, Fishilevich E, Monaghan AP, John B, Milos PM. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell. 2010;143:1018–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen Y, Ji G, Haas BJ, Wu X, Zheng J, Reese GJ, Li QQ. Genome level analysis of rice mRNA 3′-end processing signals and alternative polyadenylation. Nucleic Acids Res. 2008;36:3150–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Liu M, Downie B, Liang C, Ji G, Li QQ, Hunt AG. Genome-wide landscape of polyadenylation in Arabidopsis provides evidence for extensive alternative polyadenylation. Proc Natl Acad Sci U S A. 2011;108:12533–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mangone M, Manoharan AP, Thierry-Mieg D, Thierry-Mieg J, Han T, Mackowiak SD, Mis E, Zegar C, Gutwein MR, Khivansara V. The landscape of C. elegans 3′ UTRs. Science. 2010;329:432–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jan CH, Friedman RC, Ruby JG, Bartel DP. Formation, regulation and evolution of Caenorhabditis elegans 3 [prime] UTRs. Nature. 2011;469:97–101.
Article
CAS
PubMed
Google Scholar
Ulitsky I, Shkumatava A, Jan CH, Subtelny AO, Koppstein D, Bell GW, Sive H, Bartel DP. Extensive alternative polyadenylation during zebrafish development. Genome Res. 2012;22:2054–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Sun Y, Fu Y, Li M, Huang G, Zhang C, Liang J, Huang S, Shen G, Yuan S, et al. Dynamic landscape of tandem 3′ UTRs during zebrafish development. Genome Res. 2012;22:1899–906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shepard PJ, Choi EA, Lu J, Flanagan LA, Hertel KJ, Shi Y. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA. 2011;17:761–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pinto PA, Henriques T, Freitas MO, Martins T, Domingues RG, Wyrzykowska PS, Coelho PA, Carmo AM, Sunkel CE, Proudfoot NJ, Moreira A. RNA polymerase II kinetics in polo polyadenylation signal selection. EMBO J. 2011;30:2431–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji Z, Tian B. Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One. 2009;4:e8419.
Article
PubMed
PubMed Central
Google Scholar
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39:1278–84.
Article
CAS
PubMed
Google Scholar
Li X, Quon G, Lipshitz HD, Morris Q. Predicting in vivo binding sites of RNA-binding proteins using mRNA secondary structure. RNA. 2010;16:1096–107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimble J, Crittenden SL. Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol. 2007;23:405–33.
Article
CAS
PubMed
Google Scholar
Strome S, Updike D. Specifying and protecting germ cell fate. Nat Rev Mol Cell Biol. 2015;16:406–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Zhao Y, Wong K, Ehlers P, Kohara Y, Jones SJ, Marra MA, Holt RA, Moerman DG, Hansen D. Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE. BMC Genomics. 2009;10:1.
Article
Google Scholar
Reinke V, Gil IS, Ward S, Kazmer K. Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans. Development. 2004;131:311–23.
Article
CAS
PubMed
Google Scholar
Reinke V, Smith HE, Nance J, Wang J, Van Doren C, Begley R, Jones SJ, Davis EB, Scherer S, Ward S, Kim SK. A global profile of germline gene expression in C. elegans. Mol Cell. 2000;6:605–16.
Article
CAS
PubMed
Google Scholar
Ortiz MA, Noble D, Sorokin EP, Kimble J. A new dataset of spermatogenic vs. oogenic transcriptomes in the nematode Caenorhabditis elegans. G3 (Bethesda). 2014;4:1765–72.
Article
Google Scholar
Ma X, Zhu Y, Li C, Xue P, Zhao Y, Chen S, Yang F, Miao L. Characterisation of Caenorhabditis elegans sperm transcriptome and proteome. BMC Genomics. 2014;15:168.
Article
PubMed
PubMed Central
Google Scholar
Stoeckius M, Grun D, Rajewsky N. Paternal RNA contributions in the Caenorhabditis elegans zygote. EMBO J. 2014;33:1740–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ellis RE, Stanfield GM. The regulation of spermatogenesis and sperm function in nematodes. In Semin Cell Dev Biol. Elsevier; 2014: 17-30
Kelly WG, Schaner CE, Dernburg AF, Lee MH, Kim SK, Villeneuve AM, Reinke V. X-chromosome silencing in the germline of C. elegans. Development. 2002;129:479–92.
CAS
PubMed
PubMed Central
Google Scholar
Kaymak E, Ryder SP. RNA recognition by the Caenorhabditis elegans oocyte maturation determinant OMA-1. J Biol Chem. 2013;288:30463–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laver JD, Li X, Ray D, Cook KB, Hahn NA, Nabeel-Shah S, Kekis M, Luo H, Marsolais AJ, Fung KY. Brain tumor is a sequence-specific RNA-binding protein that directs maternal mRNA clearance during the Drosophila maternal-to-zygotic transition. Genome Biol. 2015;16:1.
Article
CAS
Google Scholar
Loedige I, Jakob L, Treiber T, Ray D, Stotz M, Treiber N, Hennig J, Cook KB, Morris Q, Hughes TR, et al. The Crystal Structure of the NHL Domain in Complex with RNA Reveals the Molecular Basis of Drosophila Brain-Tumor-Mediated Gene Regulation. Cell Rep. 2015;13:1206–20.
Article
CAS
PubMed
Google Scholar
Frank DJ, Edgar BA, Roth MB. The Drosophila melanogaster gene brain tumor negatively regulates cell growth and ribosomal RNA synthesis. Development. 2002;129:399–407.
CAS
PubMed
Google Scholar
Hedgecock EM, Herman RK. The ncl-1 gene and genetic mosaics of Caenorhabditis elegans. Genetics. 1995;141:989–1006.
CAS
PubMed
PubMed Central
Google Scholar
Frank DJ, Roth MB. ncl-1 is required for the regulation of cell size and ribosomal RNA synthesis in Caenorhabditis elegans. J Cell Biol. 1998;140:1321–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi YH, Ma TH, Lee LW, Chiou PT, Chen PH, Lee CM, Chu YD, Yu H, Hsiung KC, Tsai YT, et al. A Genetic Cascade of let-7-ncl-1-fib-1 Modulates Nucleolar Size and rRNA Pool in Caenorhabditis elegans. PLoS Genet. 2015;11:e1005580.
Article
PubMed
PubMed Central
Google Scholar
Voutev R, Killian DJ, Ahn JH, Hubbard EJ. Alterations in ribosome biogenesis cause specific defects in C. elegans hermaphrodite gonadogenesis. Dev Biol. 2006;298:45–58.
Article
CAS
PubMed
Google Scholar
Lee CC, Tsai YT, Kao CW, Lee LW, Lai HJ, Ma TH, Chang YS, Yeh NH, Lo SJ. Mutation of a Nopp140 gene dao-5 alters rDNA transcription and increases germ cell apoptosis in C. elegans. Cell Death Dis. 2014;5:e1158.
Article
CAS
PubMed
PubMed Central
Google Scholar
Utama B, Kennedy D, Ru K, Mattick JS. Isolation and characterization of a new nucleolar protein, Nrap, that is conserved from yeast to humans. Genes Cells. 2002;7:115–32.
Article
CAS
PubMed
Google Scholar
Tian B, Manley JL. Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci. 2013;38:312–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mueller AA, Cheung TH, Rando TA. All’s well that ends well: alternative polyadenylation and its implications for stem cell biology. Curr Opin Cell Biol. 2013;25:222–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Severson AF, Hamill DR, Carter JC, Schumacher J, Bowerman B. The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr Biol. 2000;10:1162–71.
Article
CAS
PubMed
Google Scholar
Rogers E, Bishop JD, Waddle JA, Schumacher JM, Lin R. The aurora kinase AIR-2 functions in the release of chromosome cohesion in Caenorhabditis elegans meiosis. J Cell Biol. 2002;157:219–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taniguchi I, Ohno M. ATP-dependent recruitment of export factor Aly/REF onto intronless mRNAs by RNA helicase UAP56. Mol Cell Biol. 2008;28:601–8.
Article
CAS
PubMed
Google Scholar
Stubbs SH, Conrad NK. Depletion of REF/Aly alters gene expression and reduces RNA polymerase II occupancy. Nucleic Acids Res. 2015;43:504–19.
Article
CAS
PubMed
Google Scholar
Waddle JA, Cooper JA, Waterston RH. The alpha and beta subunits of nematode actin capping protein function in yeast. Mol Biol Cell. 1993;4:907–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strome S, Kelly WG, Ercan S, Lieb JD. Regulation of the X chromosomes in Caenorhabditis elegans. Cold Spring Harb Perspect Biol. 2014;6:a018366.
Article
PubMed
PubMed Central
Google Scholar
Wright JE, Gaidatzis D, Senften M, Farley BM, Westhof E, Ryder SP, Ciosk R. A quantitative RNA code for mRNA target selection by the germline fate determinant GLD-1. EMBO J. 2011;30:533–45.
Article
CAS
PubMed
Google Scholar
Su YQ, Sugiura K, Woo Y, Wigglesworth K, Kamdar S, Affourtit J, Eppig JJ. Selective degradation of transcripts during meiotic maturation of mouse oocytes. Dev Biol. 2007;302:104–17.
Article
CAS
PubMed
Google Scholar
Yu C, Ji SY, Sha QQ, Dang Y, Zhou JJ, Zhang YL, Liu Y, Wang ZW, Hu B, Sun QY, et al. BTG4 is a meiotic cell cycle-coupled maternal-zygotic-transition licensing factor in oocytes. Nat Struct Mol Biol. 2016;23:387–94.
Article
CAS
PubMed
Google Scholar
Korčeková D, Gombitová A, Raška I, Cmarko D, Lanctôt C. Nucleologenesis in the Caenorhabditis elegans embryo. PLoS One. 2012;7:e40290.
Article
PubMed
PubMed Central
Google Scholar
Lee LW, Lee CC, Huang CR, Lo SJ. The nucleolus of Caenorhabditis elegans. J Biomed Biotechnol. 2012;2012:601274.
PubMed
PubMed Central
Google Scholar
Beaudoing E, Freier S, Wyatt JR, Claverie JM, Gautheret D. Patterns of variant polyadenylation signal usage in human genes. Genome Res. 2000;10:1001–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y. Alternative polyadenylation: new insights from global analyses. RNA. 2012;18:2105–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
L’Hernault SW: Spermatogenesis. WormBook 2006:1-14
Hardy JG, Norbury CJ. Cleavage factor Im (CFIm) as a regulator of alternative polyadenylation. Biochem Soc Trans. 2016;44:1051–7.
Article
CAS
PubMed
Google Scholar
MacDonald CC, McMahon KW. Tissue-specific mechanisms of alternative polyadenylation: testis, brain, and beyond. Wiley Interdiscip Rev RNA. 2010;1:494–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu D, Brockman JM, Dass B, Hutchins LN, Singh P, McCarrey JR, MacDonald CC, Graber JH. Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis. Nucleic Acids Res. 2007;35:234–46.
Article
CAS
PubMed
Google Scholar
Li W, Park JY, Zheng D, Hoque M, Yehia G, Tian B. Alternative cleavage and polyadenylation in spermatogenesis connects chromatin regulation with post-transcriptional control. BMC Biol. 2016;14:6.
Article
PubMed
PubMed Central
Google Scholar
Racher H, Hansen D. Translational control in the C. elegans hermaphrodite germ line. Genome. 2010;53:83–102.
Article
CAS
PubMed
Google Scholar
Frokjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen SP, Grunnet M, Jorgensen EM. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet. 2008;40:1375–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okonechnikov K, Conesa A, Garcia-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–4.
CAS
PubMed
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 2015;31:166–9. https://doi.org/10.1093/bioinformatics/btu638.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
Google Scholar
Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res. 2016;44:D336–342.
Article
CAS
PubMed
Google Scholar
Li W, You B, Hoque M, Zheng D, Luo W, Ji Z, Park JY, Gunderson SI, Kalsotra A, Manley JL. Systematic profiling of poly (A) + transcripts modulated by core 3′end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation. PLoS Genet. 2015;11:e1005166.
Article
PubMed
PubMed Central
Google Scholar
Huang T, Kuersten S, Deshpande AM, Spieth J, MacMorris M, Blumenthal T. Intercistronic region required for polycistronic pre-mRNA processing in Caenorhabditis elegans. Mol Cell Biol. 2001;21:1111–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.
Article
CAS
PubMed
Google Scholar
West SM., Mecenas D., Gutwein M., Aristzábal-Corrales, D., Piano, F., Gunsalus, KC. Developmental dynamics of gene expression and alternative polyadenylation in the Caenorhabditis elegans germline. NCBI Sequence Read Archive. 2017. https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study = SRP096640.
West SM., Mecenas D., Gutwein M., Aristzábal-Corrales, D., Piano, F., Gunsalus, KC. Developmental dynamics of gene expression and alternative polyadenylation in the Caenorhabditis elegans germline Supplemental Figures. figshare. https://doi.org/10.6084/m9.figshare.5561983 (2017).
West SM., Mecenas D., Gutwein M., Aristzábal-Corrales, D., Piano, F., Gunsalus, KC. Developmental dynamics of gene expression and alternative polyadenylation in the Caenorhabditis elegans germline Supplemental Tables. figshare. https://doi.org/10.6084/m9.figshare.5562007 (2017).
West SM., Mecenas D., Gutwein M., Aristzábal-Corrales, D., Piano, F., Gunsalus, KC. Developmental dynamics of gene expression and alternative polyadenylation in the Caenorhabditis elegans germline Supplemental Data. figshare. https://doi.org/10.6084/m9.figshare.5567806 (2017).