Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science. 2002; 295:1306–11.
Article
CAS
PubMed
Google Scholar
Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet. 2006; 38:1341–7.
Article
CAS
PubMed
Google Scholar
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet. 2006; 38:1348–54.
Article
CAS
PubMed
Google Scholar
Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 2006; 16:1299–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature. 2009; 462:58–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009; 326:289–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S, et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 2006; 16:123–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007; 129:823–37.
Article
CAS
PubMed
Google Scholar
Ay F, Noble WS. Analysis methods for studying the 3D architecture of the genome. Genome Biol. 2015; 16:1–15.
Article
CAS
Google Scholar
Schmitt AD, Hu M, Ren B. Genome-wide mapping and analysis of chromosome architecture. Nat Rev Mol Cell Biol. 2016; 17:743–55.
Article
CAS
PubMed
Google Scholar
Lajoie BR, Dekker J, Kaplan N. The Hitchhiker’s guide to Hi-C analysis: practical guidelines. Methods. 2015; 72:65–75.
Article
CAS
PubMed
Google Scholar
Ay F, Bailey TL, Noble WS. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res. 2014; 24:999–1011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012; 485:376–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS, Ralston EJ, et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature. 2015; 523:240–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, et al. Topologically associating domains are stable units of replication-timing regulation. Nature. 2014; 515:402–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Varoquaux N, Ay F, Noble WS, Vert JP. A statistical approach for inferring the 3D structure of the genome. Bioinformatics. 2014; 30:i26–i33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu M, Deng K, Qin Z, Dixon J, Selvaraj S, Fang J, et al. Bayesian inference of spatial organizations of chromosomes. PLoS Comput Biol. 2013; 9:e1002893.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lesne A, Riposo J, Roger P, Cournac A, Mozziconacci J. 3D genome reconstruction from chromosomal contacts. Nat Methods. 2014; 11:1141–3.
Article
CAS
PubMed
Google Scholar
Baù D, Sanyal A, Lajoie BR, Capriotti E, Byron M, Lawrence JB, et al. The three-dimensional folding of the α-globin gene domain reveals formation of chromatin globules. Nat Struct Mol Biol. 2011; 18:107–14.
Article
PubMed
Google Scholar
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The Human Genome Browser at UCSC. Genome Res. 2002; 12:996–1006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotech. 2011; 29:24–6.
Article
CAS
Google Scholar
Paulsen J, Sandve GK, Gundersen S, Lien TG, Trengereid K, Hovig E. HiBrowse: multi-purpose statistical analysis of genome-wide chromatin 3D organization. Bioinformatics. 2014; 30:1620–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lajoie BR, van Berkum NL, Sanyal A, Dekker J. My5C: web tools for chromosome conformation capture studies. Nat Methods. 2009; 6:690–1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durand NC, Robinson JT, Shanim MS, Machol I, Mesirov JP, Lander ES, et al. Juicebox provides a Visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 2016; 3:99–101.
Article
CAS
PubMed
Google Scholar
Zhou X, Lowdon RF, Li D, Lawson HA, Madden PA, Costello JF, et al. Exploring long-range genome interactions using the WashU EpiGenome Browser. Nat Methods. 2013; 10:375–6.
Article
CAS
PubMed
Google Scholar
The Epigenome Browser. http://www.3dgenome.org.
Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI, et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci USA. 2015; 112(47):E6456–65. doi:http://dx.doi.org/10.1073/pnas.1518552112.
Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014; 159:1665–80.
Article
CAS
PubMed
Google Scholar
Li C, Dong X, Fan H, Wang C, Ding G, Li Y. The 3DGD: a database of genome 3D structure. Bioinformatics. 2014; 30:1640–2.
Article
PubMed
Google Scholar
Teng L, He B, Wang J, Tan K. 4DGenome: a comprehensive database of chromatin interactions. Bioinformatics. 2015; 31:2560–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
BUTLRTools. https://github.com/yuelab/BUTLRTools.
Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, et al. Juicer Provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016; 3:95–8.
Article
CAS
PubMed
Google Scholar
Yaffe E, Tanay A. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet. 2011; 43:1059–65.
Article
CAS
PubMed
Google Scholar
Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods. 2012; 9:999–1003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knight PA, Ruiz D. A fast algorithm for matrix balancing. IMA J Numer Anal. 2013; 33:1029–47.
Article
Google Scholar
Hu M, Deng K, Selvaraj S, Qin Z, Ren B, Liu JS. HiCNorm: removing biases in Hi-C data via Poisson regression. Bioinformatics. 2012; 28:3131–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fortin J, Hansen KD. Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data. Genome Biol. 2015; 16:180.
Article
PubMed
PubMed Central
Google Scholar
Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015; 16:259.
Article
PubMed
PubMed Central
Google Scholar
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010; 38:576–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26:139–40.
Article
CAS
PubMed
Google Scholar
Thurman R, Rynes E, Humbert R, Vierstra J, Maurano M, Haugen E, et al. The accessible chromatin landscape of the human genome. Nature. 2012; 489:75–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akdemir KC, Chin L. HiCPlotter integrates genomic data with interaction matrices. Genome Biol. 2015; 16:198.
Article
PubMed
PubMed Central
Google Scholar
Servant N, Lajoie BR, Nora EP, Giorgetti L, Chen CJ, Heard E, et al. HiTC: exploration of high-throughput ‘C’ experiments. Bioinformatics. 2012; 28:2843–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lun AT, Smyth GK. diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinforma. 2015; 16:258.
Article
Google Scholar
Rosa A, Zimmer C. Computational models of large-scale genome architecture. Int Rev Cell Mol Biol. 2014; 307:275–349.
Article
CAS
PubMed
Google Scholar
Nowotny J, Wells A, Oluwadore O, Xu L, Cao R, Trieu T, et al. GMOL: An interactive tool for 3D genome structure visualization. Sci Rep. 2016; 6:20802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serra F, Baù D, Filion G, Marti-Renom MA. Structural features of the fly chromatin colors revealed by automatic three-dimensional modeling. bioRxiv. 2016. http://biorxiv.org/content/early/2016/01/15/036764.
TADkit. http://sgt.cnag.cat/3dg/tadkit/.
Deng X, Ma W, Ramani V, Hill A, Yang F, Ay F, et al. Bipartite structure of the inactive mouse X chromosome. Genome Biol. 2015; 16:152.
Article
PubMed
PubMed Central
Google Scholar
Lee BK, Bhinge AA, Battenhouse A, McDaniell RM, Liu Z, Song L, et al. Cell-type specific and combinatorial usage of diverse transcription factors revealed by genome-wide binding studies in multiple human cells. Genome Res. 2012; 22:9–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma W, Ay F, Lee C, Gulsoy G, Deng X, Cook S, et al. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of lincRNA genes. Nat Methods. 2015; 12:71–8.
Article
PubMed
Google Scholar