Francino MP, Ochman H. Isochores result from mutation not selection. Nature. 1999;400:30–1.
Article
CAS
PubMed
Google Scholar
Eyre-Walker AC. An analysis of codon usage in mammals: selection or mutation bias? J Mol Evol. 1991;33:442–9.
Article
CAS
PubMed
Google Scholar
Rao Y, Wu G, Wang Z, Chai X, Nie Q, Zhang X. Mutation bias is the driving force of codon usage in the Gallus gallus genome. DNA Res. 2011;18:499–512.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plotkin JB, Robins H, Levine AJ. Tissue-specific codon usage and the expression of human genes. Proc Natl Acad Sci U S A. 2004;101:12588–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sørensen MA, Kurland CG, Pedersen S. Codon usage determines translation rate in Escherichia coli. J Mol Biol. 1989;207:365–77.
Article
PubMed
Google Scholar
Hu H, Gao J, He J, Yu B, Zheng P, Huang Z, et al. Codon optimization significantly improves the expression level of a keratinase gene in Pichia pastoris. PLoS One. 2013;8(3):e58393.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akashi H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics. 1994;136:927–35.
CAS
PubMed
PubMed Central
Google Scholar
Shah P, Gilchrist MA. Explaining complex codon usage patterns with selection for translational efficiency, mutation bias, and genetic drift. Proc Natl Acad Sci U S A. 2011;108:10231–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Novoa EM, Ribas de Pouplana L. Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet. 2012;28:574–81.
Article
CAS
PubMed
Google Scholar
Lao PJ, Forsdyke DR. Thermophilic bacteria strictly obey Szybalski’s transcription direction rule and politely purine-load RNAs with both adenine and guanine. Genome Res. 2000;10:228–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paz A, Mester D, Baca I, Nevo E, Korol A. Adaptive role of increased frequency of polypurine tracts in mRNA sequences of thermophilic prokaryotes. Proc Natl Acad Sci U S A. 2004;101:2951–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Subramanian S. Nearly neutrality and the evolution of codon usage bias in eukaryotic genomes. Genetics. 2008;178:2429–32.
Article
PubMed
PubMed Central
Google Scholar
Rocha EPC, Feil EJ. Mutational patterns cannot explain genome composition: are there any neutral sites in the genomes of bacteria? PLoS Genet. 2010;6:1–4.
Article
CAS
Google Scholar
McEwan CE, Gatherer D, McEwan NR. Nitrogen-fixing aerobic bacteria have higher genomic GC content than non-fixing species within the same genus. Hereditas. 1998;128:173–8.
Article
CAS
PubMed
Google Scholar
Elser JJ, Acquisti C, Kumar S. Stoichiogenomics: the evolutionary ecology of macromolecular elemental composition. Trends Ecol Evol. 2011;26:38–44.
Article
PubMed
Google Scholar
Baudouin-Cornu P, Surdin-Kerjan Y, Marliere P, Thomas D. Molecular evolution of protein function. Science. 2001;293:297–300.
Article
CAS
PubMed
Google Scholar
Acquisti C, Kumar S, Elser JJ. Signatures of nitrogen limitation in the elemental composition of the proteins involved in the metabolic apparatus. Proc Biol Sci. 2009;276:2605–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li N, Lv J, Niu DK. Low contents of carbon and nitrogen in highly abundant proteins: Evidence of selection for the economy of atomic composition. J Mol Evol. 2009;68:248–55.
Article
CAS
PubMed
Google Scholar
Rocha EPC, Danchin A. Base composition bias might result from competition for metabolic resources. Trends Genet. 2002;18:291–4.
Article
CAS
PubMed
Google Scholar
Buckland RJ, Watt DL, Chittoor B, Nilsson AK, Kunkel TA, Chabes A. Increased and imbalanced dNTP pools symmetrically promote both leading and lagging strand replication infidelity. PLoS Genet. 2014;10:e1004846.
Article
PubMed
PubMed Central
Google Scholar
Acquisti C, Elser JJ, Kumar S. Ecological nitrogen limitation shapes the DNA composition of plant genomes. Mol Biol Evol. 2009;26:953–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bragg JG, Quigg A, Raven JA, Wagner A. Protein elemental sparing and codon usage bias are correlated among bacteria. Mol Ecol. 2012;21:2480–7.
Article
PubMed
Google Scholar
Pereyre S, Sirand-Pugnet P, Beven L, Charron A, Renaudin H, Barré A, et al. Life on arginine for Mycoplasma hominis: clues from its minimal genome and comparison with other human urogenital mycoplasmas. PLoS Genet. 2009;5(10):e1000677.
Article
CAS
PubMed
PubMed Central
Google Scholar
Creek DJ, Nijagal B, Kim DH, Rojas F, Matthews KR, Barrett MP. Metabolomics guides rational development of a simplified cell culture medium for drug screening against trypanosoma brucei. Antimicrob Agents Chemother. 2013;57:2768–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Razin S, Knight BC. A partially defined medium for the growth of Mycoplasma. J Gen Microbiol. 1960;22:492–503.
Article
CAS
PubMed
Google Scholar
Jaskowska E, Butler C, Preston G, Kelly S. Phytomonas: trypanosomatids adapted to plant environments. PLoS Pathog. 2015;11:e1004484.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ginger M, Fairlamb A, Opperdoes F. Comparative genomics of trypanosome metabolism. Trypanosomes: after the genome. 2007;373-417
Arraes FBM, de Carvalho MJA, Maranhão AQ, Brígido MM, Pedrosa FO, Felipe MSS. Differential metabolism of Mycoplasma species as revealed by their genomes. Genet Mol Biol. 2007;30:182–9.
Article
CAS
Google Scholar
Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E. Current view on phytoplasma genomes and encoded metabolism. Sci World J. 2012;2012:1–25.
Article
CAS
Google Scholar
Kolev NG, Franklin JB, Carmi S, Shi H, Michaeli S, Tschudi C. The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog. 2010;6:1–15.
Article
CAS
Google Scholar
Pollack JD, Williams MV, McElhaney RN. The comparative metabolism of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the relationship of putative gene annotation and phylogeny to enzymatic function in the smallest free-living cells. Crit Rev Microbiol. 1997;23:269–354.
Article
CAS
PubMed
Google Scholar
Williams MV, Pollack JD. A mollicute (Mycoplasma) DNA repair enzyme: purification and characterization of uracil-DNA glycosylase. J Bacteriol. 1990;172:2979–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fiebig M, Kelly S, Gluenz E. Comparative life cycle transcriptomics revises Leishmania mexicana genome annotation and links a chromosome duplication with parasitism of vertebrates. PLoS Pathog. 2015;11:e1005186.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wanasen N, Soong L. L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunol Res. 2008;41:15–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elser JJ, Fagan WF, Subramanian S, Kumar S. Signatures of ecological resource availability in the animal and plant proteomes. Mol Biol Evol. 2006;23:1946–51.
Article
CAS
PubMed
Google Scholar
Stoletzki N, Eyre-Walker A. Synonymous codon usage in Escherichia coli: selection for translational accuracy. Mol Biol Evol. 2007;24:374–81.
Article
CAS
PubMed
Google Scholar
Ran W, Higgs PG. Contributions of speed and accuracy to translational selection in bacteria. PLoS One. 2012;7(12):e51652.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ran W, Higgs PG. The influence of anticodon-codon interactions and modified bases on codon usage bias in bacteria. Mol Biol Evol. 2010;27:2129–40.
Article
CAS
PubMed
Google Scholar
Higgs PG, Ran W. Coevolution of codon usage and tRNA genes leads to alternative stable states of biased codon usage. Mol Biol Evol. 2008;25:2279–91.
Article
CAS
PubMed
Google Scholar
Drummond DA, Wilke CO. The evolutionary consequences of erroneous protein synthesis. Nat Rev Genet. 2009;10:715–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shields DC. Switches in species-specific codon preferences: the influence of mutation biases. J Mol Evol. 1990;31:71–80.
Article
CAS
PubMed
Google Scholar
Bulmer M. The selection-mutation-drift theory of synonymous codon usage. Genetics. 1991;129:897–907.
CAS
PubMed
PubMed Central
Google Scholar
Li WH. Models of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons. J Mol Evol. 1987;24:337–45.
Article
CAS
PubMed
Google Scholar
Worning P, Jensen LJ, Hallin PF, Stærfeldt H, Ussery DW. Environmental microbiology. Environ Microbiol. 2006;8:2912.
Article
Google Scholar
Galtier N. Gene conversion drives GC content evolution in mammalian histones. Trends Genet. 2003;19:65–8.
Article
CAS
PubMed
Google Scholar
Lynch M. The origins of genome architecture. 1st ed. Sunderland: Sinauer Associates, Inc. Publishers; 2007.
Google Scholar
Sharp PM, Bailes E, Grocock RJ, Peden JF, Sockett RE. Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res. 2005;33:1141–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Supek F, Škunca N, Repar J, Vlahoviček K, Šmuc T. Translational selection is ubiquitous in prokaryotes. PLoS Genet. 2010;6:1–13.
Article
CAS
Google Scholar
Krisko A, Copic T, Gabaldón T, Lehner B, Supek F. Inferring gene function from evolutionary change in signatures of translation efficiency. Genome Biol. 2014;15:R44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuller T, Waldman YY, Kupiec M, Ruppin E. Translation efficiency is determined by both codon bias and folding energy. Proc Natl Acad Sci U S A. 2010;107:3645–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambros RJ, Mortimer JR, Forsdyke DR. Optimum growth temperature and the base composition of open reading frames in prokaryotes. Extremophiles. 2003;7:443–50.
Article
CAS
PubMed
Google Scholar
Hurst LD, Merchant AR. High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. Proc Biol Sci. 2001;268:493–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oshima K, Kakizawa S, Nishigawa H, Jung H-Y, Wei W, Suzuki S, et al. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet. 2004;36:27–9.
Article
CAS
PubMed
Google Scholar
Tran-Nguyen LTT, Kube M, Schneider B, Reinhardt R, Gibb KS. Comparative genome analysis of “Candidatus Phytoplasma australiense” (subgroup tuf-Australia I; rp-A) and “Ca. phytoplasma asteris” strains OY-M and AY-WB. J Bacteriol. 2008;190:3979–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM, et al. The linear chromosome of the plant-pathogenic mycoplasma “Candidatus Phytoplasma mali”. BMC Genomics. 2008;9:306.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitrović J, Siewert C, Duduk B, Hecht J, Mölling K, Broecker F, et al. Generation and analysis of draft sequences of “stolbur” phytoplasma from multiple displacement amplification templates. J Mol Microbiol Biotechnol. 2014;24:1–11.
Article
CAS
PubMed
Google Scholar
Andersen MT, Liefting LW, Havukkala I, Beever RE. Comparison of the complete genome sequence of two closely related isolates of “Candidatus Phytoplasma australiense” reveals genome plasticity. BMC Genomics. 2013;14:529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calderon-Copete SP, Wigger G, Wunderlin C, Schmidheini T, Frey J, Quail MA, et al. The Mycoplasma conjunctivae genome sequencing, annotation and analysis. BMC Bioinf. 2009;10 Suppl 6:S7.
Article
CAS
Google Scholar
McGowin CL, Ma L, Jensen JS, Mancuso MM, Hamasuna R, Adegboye D, et al. Draft genome sequences of four axenic Mycoplasma genitalium strains isolated from Denmark, Japan, and Australia. J Bacteriol. 2012;194:6010–1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Do Nascimento NC, Guimaraes AMS, Santos AP, SanMiguel PJ, Messick JB. Complete genome sequence of Mycoplasma haemocanis strain Illinois. J Bacteriol. 2012;194:1605–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Xiao S, Li M, Guo S, Li S, Luo R. Comparative genomic analyses of Mycoplasma hyopneumoniae pathogenic 168 strain and its high-passaged attenuated strain. BMC Genomics. 2013;14:80.
Article
CAS
PubMed
PubMed Central
Google Scholar
do Nascimento NC, Dos Santos AP, Chu Y, Guimaraes AMS, Pagliaro A, Messick JB. Genome sequence of Mycoplasma parvum (formerly Eperythrozoon parvum), a diminutive hemoplasma of the pig. Genome Announc. 2013;1:1–2.
Article
Google Scholar
Dybvig K, Zuhua C, Lao P, Jordan DS, French CT, Tu AHT, et al. Genome of Mycoplasma arthritidis. Infect Immun. 2008;76:4000–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shu HW, Liu TT, Chan HI, Liu YM, Wu KM, Shu HY, et al. Genome sequence of the repetitive-sequence-rich Mycoplasma fermentans strain M64. J Bacteriol. 2011;193:4302–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sasaki Y, Ishikawa J, Yamashita A, Oshima K, Kenri T, Furuya K, et al. The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res. 2002;30:5293–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calcutt MJ, Foecking MF. Genome sequence of mycoplasma putrefaciens type strain KS1. J Bacteriol. 2011;193:6094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vasconcelos ATR, Vasconcelos ATR, Ferreira HB, Ferreira HB, Bizarro CV, Bizarro CV, et al. Swine and poultry pathogens: the complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae. Microbiology. 2005;187:5568–77.
CAS
Google Scholar
Brown DR, Farmerie WG, May M, Benders GA, Durkin AS, Hlavinka K, et al. Genome sequences of Mycoplasma alligatoris A21JP2T and Mycoplasma crocodyli MP145T. J Bacteriol. 2011;193:2892–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dabrazhynetskaya A, Soika V, Volokhov D, Simonyan V, Chizhikov V. Genome sequence of Mycoplasma hyorhinis strain DBS 1050. Genome Announc. 2014;2(2):e00127–14.
Article
PubMed
PubMed Central
Google Scholar
Wise KS, Calcutt MJ, Foecking MF, Madupu R, DeBoy RT, Röske K, et al. Complete genome sequences of Mycoplasma leachii strain PG50T and the pathogenic Mycoplasma mycoides subsp. mycoides small colony biotype strain Gladysdale. J Bacteriol. 2012;194:4448–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2009;38:457–62.
Article
CAS
Google Scholar
Porcel BM, Denoeud F, Opperdoes F, Noel B, Madoui M-A, Hammarton TC, et al. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genet. 2014;10:e1004007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collingridge PW, Kelly S. MergeAlign: improving multiple sequence alignment performance by dynamic reconstruction of consensus multiple sequence alignments. BMC Bioinf. 2012;13:117.
Article
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
dos Reis M, Wernisch L, Savva R. Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic Acids Res. 2003;31:6976–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
dos Reis M, Savva R, Wernisch L. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 2004;32:5036–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuller T, Carmi A, Vestsigian K, Navon S, Dorfan Y, Zaborske J, et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell. 2010;141:344–54.
Article
CAS
PubMed
Google Scholar