Aristotle BDMGAPAL. Historia animalium. London; Cambridge: MA: Heinemann: Harvard University Press; 1965.
Google Scholar
Arnold AP. The effects of castration on song development in zebra finches (Poephila guttata). J Exp Zool. 1975;191:261–78.
CAS
PubMed
Google Scholar
Heid P, Güttinger HR, Pröve E. The influence of castration and testosterone replacement on the song architecture of canaries (Serinus canaria). Z Tierpsychol. 1985;69:224–36.
Google Scholar
Kunc HP, Foerster K, Vermeirssen ELM, Kempenaers B. Experimentally elevated plasma testosterone levels Do Not influence singing behaviour of male blue tits (Parus caeruleus) during the early breeding season. Ethology. 2006;112:984–92.
Google Scholar
Maney DL, Lange HS, Raees MQ, Reid AE, Sanford SE. Behavioral phenotypes persist after gonadal steroid manipulation in white-throated sparrows. Horm Behav. 2009;55:113–20.
CAS
PubMed
Google Scholar
Pinxten R, De Ridder E, Balthazart J, Eens M. Context-dependent effects of castration and testosterone treatment on song in male European starlings. Horm Behav. 2002;42:307–18.
CAS
PubMed
Google Scholar
Der PE. Einfluß von Kastration und Testosteronsubstitution auf das Sexualverhalten männlicher Zebrafinken (Taeniopygia guttata castanotis Gould). J Ornithol. 1974;115:338–47.
Google Scholar
Prove E, Immelmann K. Behavioral and hormonal responses of male zebra finches to antiandrogens. Horm Behav. 1982;16:121–31.
CAS
PubMed
Google Scholar
Strand CR, Ross MS, Weiss SL, Deviche P. Testosterone and social context affect singing behavior but not song control region volumes in adult male songbirds in the fall. Behav Processes. 2008;78:29–37.
CAS
PubMed
Google Scholar
Van Hout AJ, Pinxten R, Darras VM, Eens M. Testosterone increases repertoire size in an open-ended learner: an experimental study using adult male European starlings (Sturnus vulgaris). Horm Behav. 2012;62:563–8.
PubMed
Google Scholar
Walters MJ, Collado D, Harding CF. Oestrogenic modulation of singing in male zebra finches: differential effects on directed and undirected songs. Anim Behav. 1991;42:445–52.
Google Scholar
Leitner S, Voigt C, Garcia-Segura LM, Van’t Hof T, Gahr M. Seasonal activation and inactivation of song motor memories in wild canaries is not reflected in neuroanatomical changes of forebrain song areas. Horm Behav. 2001;40:160–8.
CAS
PubMed
Google Scholar
Voigt C, Leitner S, Gahr M. Repertoire and structure of duet and solo songs in cooperatively breeding white-browed sparrow weavers. Behaviour. 2006;143:159–82.
Google Scholar
Gahr M. How hormone-sensitive are bird songs and what are the underlying mechanisms? Acta Acustica united with Acustica. 2014;100:705–18.
Google Scholar
Nottebohm F, Nottebohm ME, Crane LA, Wingfield JC. Seasonal changes in gonadal hormone levels of adult male canaries and their relation to song. Behav Neural Biol. 1987;47:197–211.
CAS
PubMed
Google Scholar
Voigt C, Leitner S. Seasonality in song behaviour revisited: Seasonal and annual variants and invariants in the song of the domesticated canary (Serinus canaria). Horm Behav. 2008;54:373–8.
CAS
PubMed
Google Scholar
Güttinger HR. Consequences of domestication on the song structures in the canary. Behaviour. 1985;94:254–78.
Google Scholar
Fusani L, Metzdorf R, Hutchison JB, Gahr M. Aromatase inhibition affects testosterone-induced masculinization of song and the neural song system in female canaries. J Neurobiol. 2003;54:370–9.
CAS
PubMed
Google Scholar
Vallet E, Kreutzer M. Female canaries are sexually responsive to special song phrases. Anim Behav. 1995;49:1603–10.
Google Scholar
Gahr M, Metzdorf R. Distribution and dynamics in the expression of androgen and estrogen receptors in vocal control systems of songbirds. Brain Res Bull. 1997;44:509–17.
CAS
PubMed
Google Scholar
Gahr M, Flugge G, Guttinger HR. Immunocytochemical localization of estrogen-binding neurons in the songbird brain. Brain Res. 1987;402:173–7.
CAS
PubMed
Google Scholar
Gahr M. Localization of androgen receptors and estrogen receptors in the same cells of the songbird brain. Proc Natl Acad Sci U S A. 1990;87:9445–8.
PubMed Central
CAS
PubMed
Google Scholar
Ball GF, Bernard DJ, Foidart A, Lakaye B, Balthazart J. Steroid sensitive sites in the avian brain: does the distribution of the estrogen receptor alpha and beta types provide insight into their function? Brain Behav Evol. 1999;54:28–40.
CAS
PubMed
Google Scholar
Nottebohm F, Stokes TM, Leonard CM. Central control of song in the canary. Serinus canarius. J Comp Neurol. 1976;165:457.
CAS
PubMed
Google Scholar
Wild JM. Functional neuroanatomy of the sensorimotor control of singing. Ann N Y Acad Sci. 2004;1016:438–62.
PubMed
Google Scholar
Gahr M. Delineation of a brain nucleus: comparisons of cytochemical, hodological, and cytoarchitectural views of the song control nucleus HVc of the adult canary. J Comp Neurol. 1990;294:30–6.
CAS
PubMed
Google Scholar
Nottebohm F. A brain for all seasons: cyclical anatomical changes in song control nuclei of the canary brain. Science. 1981;214:1368.
CAS
PubMed
Google Scholar
Kirn JR, Alvarez-Buylla A, Nottebohm F. Production and survival of projection neurons in a forebrain vocal center of adult male canaries. J Neurosci. 1991;11:1756.
CAS
PubMed
Google Scholar
Sartor JJ, Ball GF. Social suppression of song is associated with a reduction in volume of a song-control nucleus in European starlings (Sturnus vulgaris). Behav Neurosci. 2005;119:233–44.
PubMed
Google Scholar
Goldman SA, Nottebohm F. Neuronal production, migration, and differentiation in a vocal control nucleus in the adult female canary brain. Proc Natl Acad Sci U S A. 1983;80:2390.
PubMed Central
CAS
PubMed
Google Scholar
Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A. 2011;108:1513–8.
PubMed Central
CAS
PubMed
Google Scholar
McEwen BS, Davis PG, Parsons B, Pfaff DW. The brain as a target for steroid hormone action. Annu Rev Neurosci. 1979;2:65–112.
CAS
PubMed
Google Scholar
Arnold AP, Nottebohm F, Pfaff DW. Hormone concentrating cells in vocal control and other areas of the brain of the zebra finch (Poephila guttata). J Comp Neurol. 1976;165:487–511.
CAS
PubMed
Google Scholar
Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell. 1995;83:835–9.
CAS
PubMed
Google Scholar
Gahr M, Guttinger HR, Kroodsma DE. Estrogen receptors in the avian brain: survey reveals general distribution and forebrain areas unique to songbirds. J Comp Neurol. 1993;327:112–22.
CAS
PubMed
Google Scholar
Drnevich J, Replogle KL, Lovell P, Hahn TP, Johnson F, Mast TG, et al. Impact of experience-dependent and -independent factors on gene expression in songbird brain. Proc Natl Acad Sci U S A. 2012;109:17245–52.
PubMed Central
CAS
PubMed
Google Scholar
Thompson CK, Meitzen J, Replogle K, Drnevich J, Lent KL, Wissman AM, et al. Seasonal changes in patterns of gene expression in avian song control brain regions. PLoS One. 2012;7:e35119.
PubMed Central
CAS
PubMed
Google Scholar
International Chicken Genome Sequencing C. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716.
Google Scholar
Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Le Blomberg A, et al. Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol. 2010;8:e1000475.
PubMed Central
PubMed
Google Scholar
Huang Y, Li Y, Burt DW, Chen H, Zhang Y, Qian W, et al. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nat Genet. 2013;45:776–83.
PubMed Central
CAS
PubMed
Google Scholar
Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, et al. The genome of a songbird. Nature. 2010;464:757–62.
PubMed Central
CAS
PubMed
Google Scholar
Qu Y, Zhao H, Han N, Zhou G, Song G, Gao B, et al. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat Commun. 2013;4:2071.
PubMed
Google Scholar
Poelstra JW, Vijay N, Bossu CM, Lantz H, Ryll B, Muller I, et al. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science. 2014;344:1410–4.
CAS
PubMed
Google Scholar
Suh A, Paus M, Kiefmann M, Churakov G, Franke FA, Brosius J, et al. Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat Commun. 2011;2:443.
PubMed Central
PubMed
Google Scholar
Zhang G, Parker P, Li B, Li H, Wang J. The genome of Darwin’s Finch (Geospiza fortis). GigaScience. 2012. http://dx.doi.org/10.5524/100040.
Romanov MN, Dodgson JB, Gonser RA, Tuttle EM. Comparative BAC-based mapping in the white-throated sparrow, a novel behavioral genomics model, using interspecies overgo hybridization. BMC Res Notes. 2011;4:211.
PubMed Central
PubMed
Google Scholar
Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, et al. A phylogenomic study of birds reveals their evolutionary history. Science. 2008;320:1763–8.
CAS
PubMed
Google Scholar
48.Genome sequence of the canary (Serinus canaria) http://www.ebi.ac.uk/ena/data/search?query=GCA_000534875.
Ayers KL, Davidson NM, Demiyah D, Roeszler KN, Grutzner F, Sinclair AH, et al. RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome. Genome Biol. 2013;14:R26.
PubMed Central
PubMed
Google Scholar
Auer H, Mayr B, Lambrou M, Schleger W. An extended chicken karyotype, including the NOR chromosome. Cytogenet Cell Genet. 1987;45:218–21.
CAS
PubMed
Google Scholar
Fritschi S, Stranzinger G. Fluorescent chromosome banding in inbred chicken: quinacrine bands, sequential chromomycin and Dapi bands. Theor Appl Genet. 1985;71:408–12.
CAS
PubMed
Google Scholar
Kaelbling M, Fechheimer NS. Synaptonemal complexes and the chromosome complement of domestic fowl, Gallus domesticus. Cytogenet Cell Genet. 1983;35:87–92.
CAS
PubMed
Google Scholar
de Leon FA P, Li Y, Weng Z. Early and late replicative chromosomal banding patterns of Gallus domesticus. J Hered. 1992;83:36–42.
Google Scholar
Ohno S, Stenius C, Christian LC, Becak W, Becak ML. Chromosomal uniformity in the avian subclass carinatae. Chromosoma. 1964;15:280–8.
CAS
PubMed
Google Scholar
Itoh Y, Arnold AP. Chromosomal polymorphism and comparative painting analysis in the zebra finch. Chromosome Res. 2005;13:47–56.
CAS
PubMed
Google Scholar
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.
PubMed Central
CAS
PubMed
Google Scholar
Canary Genome Browser. http://public-genomes-ngs.molgen.mpg.de.
Hilliard Austin T, Miller Julie E, Fraley ER, Horvath S, White SA. Molecular microcircuitry underlies functional specification in a basal ganglia circuit dedicated to vocal learning. Neuron. 2012;73:537–52.
PubMed Central
CAS
PubMed
Google Scholar
Kato M, Okanoya K. Molecular characterization of the song control nucleus HVC in Bengalese finch brain. Brain Res. 2010;1360:56–76.
CAS
PubMed
Google Scholar
Li X, Wang XJ, Tannenhauser J, Podell S, Mukherjee P, Hertel M, et al. Genomic resources for songbird research and their use in characterizing gene expression during brain development. Proc Natl Acad Sci U S A. 2007;104:6834–9.
PubMed Central
CAS
PubMed
Google Scholar
Lovell PV, Clayton DF, Replogle KL, Mello CV. Birdsong “transcriptomics”: neurochemical specializations of the oscine song system. PLoS One. 2008;3:e3440.
PubMed Central
PubMed
Google Scholar
Stevenson TJ, Replogle K, Drnevich J, Clayton DF, Ball GF. High throughput analysis reveals dissociable gene expression profiles in two independent neural systems involved in the regulation of social behavior. BMC Neurosci. 2012;13:126.
PubMed Central
PubMed
Google Scholar
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25:1091–3.
PubMed Central
CAS
PubMed
Google Scholar
Hartog TE, Dittrich F, Pieneman AW, Jansen RF, Frankl-Vilches C, Lessmann V, et al. Brain-derived neurotrophic factor signaling in the HVC is required for testosterone-induced song of female canaries. J Neurosci. 2009;29:15511–9.
PubMed Central
CAS
PubMed
Google Scholar
Balthazart J, Gahr M, Surlemont C. Distribution of estrogen receptors in the brain of the Japanese quail: an immunocytochemical study. Brain Res. 1989;501:205–14.
CAS
PubMed
Google Scholar
Fusani L, Van’t Hof T, Hutchison JB, Gahr M. Seasonal expression of androgen receptors, estrogen receptors, and aromatase in the canary brain in relation to circulating androgens and estrogens. J Neurobiol. 2000;43:254–68.
CAS
PubMed
Google Scholar
Zhang C, Gao J, Zhang H, Sun L, Peng G. Robo2-slit and Dcc-netrin1 coordinate neuron axonal pathfinding within the embryonic axon tracts. J Neurosci. 2012;32:12589–602.
CAS
PubMed
Google Scholar
Byun J, Kim BT, Kim YT, Jiao Z, Hur EM, Zhou FQ. Slit2 inactivates GSK3beta to signal neurite outgrowth inhibition. PLoS One. 2012;7:e51895.
PubMed Central
CAS
PubMed
Google Scholar
Ren D. Sodium leak channels in neuronal excitability and rhythmic behaviors. Neuron. 2011;72:899–911.
PubMed Central
CAS
PubMed
Google Scholar
Chen L, Fu Y, Ren M, Xiao B, Rubin CS. A RasGRP, C. elegans RGEF-1b, couples external stimuli to behavior by activating LET-60 (Ras) in sensory neurons. Neuron. 2011;70:51–65.
PubMed Central
CAS
PubMed
Google Scholar
Kressler D, Schreiber SN, Knutti D, Kralli A. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem. 2002;277:13918–25.
CAS
PubMed
Google Scholar
Li X, Zhu C, Tu WH, Yang N, Qin H, Sun Z. ZMIZ1 preferably enhances the transcriptional activity of androgen receptor with short polyglutamine tract. PLoS One. 2011;6:e25040.
PubMed Central
CAS
PubMed
Google Scholar
Teramitsu I, Kudo LC, London SE, Geschwind DH, White SA. Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. J Neurosci. 2004;24:3152–63.
CAS
PubMed
Google Scholar
Chen Q, Heston JB, Burkett ZD, White SA. Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species. J Exp Biol. 2013;216:3682–92.
PubMed Central
CAS
PubMed
Google Scholar
Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473:337–42.
PubMed
Google Scholar
Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11:O111 016717.
PubMed Central
PubMed
Google Scholar
Vowinckel J, Capuano F, Campbell K, Deery MJ, Lilley KS, Ralser M. The beauty of being (label)-free: sample preparation methods for SWATH-MS and next-generation targeted proteomics. F1000 Res. 2013;2:272.
Google Scholar
Kushner PJ, Agard DA, Greene GL, Scanlan TS, Shiau AK, Uht RM, et al. Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol. 2000;74:311–7.
CAS
PubMed
Google Scholar
Porter W, Saville B, Hoivik D, Safe S. Functional synergy between the transcription factor Sp1 and the estrogen receptor. Mol Endocrinol. 1997;11:1569–80.
CAS
PubMed
Google Scholar
Kim J, Larkin DM, Cai AQ, Zhang Y, Ge RL, et al. Reference-assisted chromosome assembly. Proc Natl Acad Sci U S A. 2013;110:1785–90.
PubMed Central
CAS
PubMed
Google Scholar
Kong L, Lovell PV, Heger A, Mello CV, Ponting CP. Accelerated evolution of PAK3- and PIM1-like kinase gene families in the zebra finch. Taeniopygia guttata. Mol Biol Evol. 2010;27:1923–34.
PubMed Central
CAS
PubMed
Google Scholar
Prufer K, Munch K, Hellmann I, Akagi K, Miller JR, Walenz B, et al. The bonobo genome compared with the chimpanzee and human genomes. Nature. 2012;486:527–31.
PubMed Central
PubMed
Google Scholar
Balthazart J, Foidart A, Wilson EM, Ball GF. Immunocytochemical localization of androgen receptors in the male songbird and quail brain. J Comp Neurol. 1992;317:407–20.
CAS
PubMed
Google Scholar
Nottebohm F. Testosterone triggers growth of brain vocal control nuclei in adult female canaries. Brain Res. 1980;189:429–36.
CAS
PubMed
Google Scholar
Sartor JJ, Balthazart J, Ball GF. Coordinated and dissociated effects of testosterone on singing behavior and song control nuclei in canaries (Serinus canaria). Horm Behav. 2005;47:467–76.
CAS
PubMed
Google Scholar
DeVoogd T, Nottebohm F. Gonadal hormones induce dendritic growth in the adult avian brain. Science. 1981;214:202–4.
CAS
PubMed
Google Scholar
Jansen R, Metzdorf R, van der Roest M, Fusani L, ter Maat A, Gahr M. Melatonin affects the temporal organization of the song of the zebra finch. FASEB J. 2005;19:848–50.
CAS
PubMed
Google Scholar
DeVoogd TJ. Endocrine mdulation of the development and adult function of the avian song system. Psychoneuroendocrinol. 1991;16:41–66.
CAS
Google Scholar
Fusani L, Gahr M. Hormonal influence on song structure and organization: the role of estrogen. Neuroscience. 2006;138:939–46.
CAS
PubMed
Google Scholar
Meitzen J, Moore IT, Lent K, Brenowitz EA, Perkel DJ. Steroid hormones act transsynaptically within the forebrain to regulate neuronal phenotype and song stereotypy. J Neurosci. 2007;27:12045–57.
CAS
PubMed
Google Scholar
Fusani L, Van’t Hof T, Hutchison JB. Season-related changes in circulating androgen, brain aromatase, and perch-calling in male ring doves. Gen Comp Endocrinol. 2003;130:142–7.
CAS
PubMed
Google Scholar
Metzdorf R, Gahr M, Fusani L. Distribution of aromatase, estrogen receptor, and androgen receptor mRNA in the forebrain of songbirds and nonsongbirds. J Comp Neurol. 1999;407:115–29.
CAS
PubMed
Google Scholar
Vellema M, Hertel M, Urbanus SL, Van der Linden A, Gahr M. Evaluating the predictive value of doublecortin as a marker for adult neurogenesis in canaries (Serinus canaria). J Comp Neurol. 2014;522:1299–315.
CAS
PubMed
Google Scholar
Lin Z, Reierstad S, Huang CC, Bulun SE. Novel estrogen receptor-alpha binding sites and estradiol target genes identified by chromatin immunoprecipitation cloning in breast cancer. Cancer Res. 2007;67:5017–24.
CAS
PubMed
Google Scholar
Nott SL, Huang Y, Li X, Fluharty BR, Qiu X, Welshons WV, et al. Genomic responses from the estrogen-responsive element-dependent signaling pathway mediated by estrogen receptor alpha are required to elicit cellular alterations. J Biol Chem. 2009;284:15277–88.
PubMed Central
CAS
PubMed
Google Scholar
Stender JD, Kim K, Charn TH, Komm B, Chang KC, Kraus WL, et al. Genome-wide analysis of estrogen receptor alpha DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Mol Cell Biol. 2010;30:3943–55.
PubMed Central
CAS
PubMed
Google Scholar
Güttinger H, Fuchs H, Schwager G. Das Gesangslernen und seine Beziehung zur Gehirnentwicklung beim Kanarienvogel (Serinus canaria). Die Vogelwarte. 1990;35:287–300.
Google Scholar
Vellema M, Ko MC, Frankl-Vilches C, Gahr M. What makes a marker a good marker? Commentary on Balthazart J and Ball G (2014): Doublecortin is a highly valuable endogenous marker of adult neurogenesis in canaries. Brain Behav Evol 84:1–4. Brain Behav Evol. 2014;84:5–7.
PubMed
Google Scholar
Brenowitz EA. Altered perception of species-specific song by female birds after lesions of a forebrain nucleus. Science. 1991;251:303–5.
CAS
PubMed
Google Scholar
Del Negro C, Kreutzer M, Gahr M. Sexually stimulating signals of canary (Serinus canaria) songs: evidence for a female-specific auditory representation in the HVc nucleus during the breeding season. Behav Neurosci. 2000;114:526–42.
PubMed
Google Scholar
Young LJ, Wang Z. The neurobiology of pair bonding. Nat Neurosci. 2004;7:1048–54.
CAS
PubMed
Google Scholar
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–9.
PubMed Central
CAS
PubMed
Google Scholar
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376–80.
PubMed Central
CAS
PubMed
Google Scholar
Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010;20:265–72.
PubMed Central
CAS
PubMed
Google Scholar
Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, et al. Aggressive assembly of pyrosequencing reads with mates. Bioinformatics. 2008;24:2818–24.
PubMed Central
CAS
PubMed
Google Scholar
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27:578–9.
CAS
PubMed
Google Scholar
Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence comparison. Genome Res. 2011;21:487–93.
PubMed Central
PubMed
Google Scholar
Reiner A, Perkel DJ, Mello CV, Jarvis ED. Songbirds and the revised avian brain nomenclature. Ann N Y Acad Sci. 2004;1016:77–108.
PubMed Central
PubMed
Google Scholar
Grabherr MG, Russell P, Meyer M, Mauceli E, Alfoldi J, Di Palma F, et al. Genome-wide synteny through highly sensitive sequence alignment: Satsuma. Bioinformatics. 2010;26:1145–51.
PubMed Central
CAS
PubMed
Google Scholar
Saski M, Ikechi T, Makino S. A feather pulp culture technique for avian chromosomes, with notes on the chromosomes of the peafowl and the ostrich. Experientia. 1968;24:1292–3.
CAS
PubMed
Google Scholar
Gotoh O. A space-efficient and accurate method for mapping and aligning cDNA sequences onto genomic sequence. Nucleic Acids Res. 2008;36:2630–8.
PubMed Central
CAS
PubMed
Google Scholar
Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008;24:637–44.
CAS
PubMed
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
CAS
PubMed
Google Scholar
RepeatMasker. http://www.repeatmasker.org.
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7:562–78.
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
CAS
PubMed
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
PubMed Central
CAS
PubMed
Google Scholar
Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq data. Genome Res. 2012;22:2008–17.
PubMed Central
CAS
PubMed
Google Scholar
genomatix. http://www.genomatix.de.
Cohen CD, Lindenmeyer MT, Eichinger F, Hahn A, Seifert M, Moll AG, et al. Improved elucidation of biological processes linked to diabetic nephropathy by single probe-based microarray data analysis. PLoS One. 2008;3:e2937.
PubMed Central
PubMed
Google Scholar
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.
PubMed Central
CAS
PubMed
Google Scholar
Expression data from Serinus canaria HVC, RA and Entopallium http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50070.
Primer3web. http://primer3.wi.mit.edu.
Shevchenko G, Musunuri S, Wetterhall M, Bergquist J. Comparison of extraction methods for the comprehensive analysis of mouse brain proteome using shotgun-based mass spectrometry. J Proteome Res. 2012;11:2441–51.
CAS
PubMed
Google Scholar
MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26:966–8.
PubMed Central
CAS
PubMed
Google Scholar
Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, et al. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics. 2005;21:2933–42.
CAS
PubMed
Google Scholar
Michelhaugh SK, Lipovich L, Blythe J, Jia H, Kapatos G, Bannon MJ. Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers. J Neurochem. 2011;116:459–66.
PubMed Central
CAS
PubMed
Google Scholar
Sharad S, Srivastava A, Ravulapalli S, Parker P, Chen Y, Li H, et al. Prostate cancer gene expression signature of patients with high body mass index. Prostate Cancer Prostatic Dis. 2011;14:22–9.
PubMed Central
CAS
PubMed
Google Scholar
Voigt C, Gahr M, Leitner S, Lutermann H, Bennett N. Breeding status and social environment differentially affect the expression of sex steroid receptor and aromatase mRNA in the brain of female Damaraland mole-rats. Front Zool. 2014;11:38.
PubMed Central
PubMed
Google Scholar
Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2:2366–82.
PubMed Central
CAS
PubMed
Google Scholar
Saito R, Smoot ME, Ono K, Ruscheinski J, Wang PL, Lotia S, et al. A travel guide to Cytoscape plugins. Nat Methods. 2012;9:1069–76.
PubMed Central
CAS
PubMed
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
PubMed Central
CAS
PubMed
Google Scholar
Smoot ME, Ono K, Ruscheinski J, Wang PL. Ideker. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–2.
PubMed Central
CAS
PubMed
Google Scholar
ENA: Genome sequence of the canary (Serinus canaria). http://www.ebi.ac.uk/ena/data/view/PRJEB1766
European Nucleotide Archive. http://www.ebi.ac.uk/ena/.
Transcriptome sequencing of Serinus Canaria and Taeniopygia guttata brain tissues. http://www.ebi.ac.uk/ena/data/view/PRJEB4463
Gene expression Omnibus. http://www.ncbi.nlm.nih.gov/geo/.