Garinis GA, van der Horst GT, Vijg J, Hoeijmakers JH: DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol. 2008, 10: 1241-1247. 10.1038/ncb1108-1241.
Article
PubMed
CAS
PubMed Central
Google Scholar
Song Z, Von FG, Liu Y, Kraus JM, Torrice C, Dillon P, Rudolph-Watabe M, Ju Z, Kestler HA, Sanoff H, Lenhard RK: Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell. 2010, 9: 607-615. 10.1111/j.1474-9726.2010.00583.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Blasco MA: Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005, 6: 611-622. 10.1038/nrg1656.
Article
PubMed
CAS
Google Scholar
Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF, Aviv A, Spector TD: Obesity, cigarette smoking, and telomere length in women. Lancet. 2005, 366: 662-664. 10.1016/S0140-6736(05)66630-5.
Article
PubMed
CAS
Google Scholar
Cortopassi GA, Shibata D, Soong NW, Arnheim N: A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci U S A. 1992, 89: 7370-7374. 10.1073/pnas.89.16.7370.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zubakov D, Liu F, van Zelm MC, Vermeulen J, Oostra BA, van Duijn CM, Driessen GJ, van Dongen JJ, Kayser M, Langerak AW: Estimating human age from T-cell DNA rearrangements. Curr Biol. 2010, 20: R970-R971. 10.1016/j.cub.2010.10.022.
Article
PubMed
CAS
Google Scholar
Helfman PM, Bada JL: Aspartic acid racemisation in dentine as a measure of ageing. Nature. 1976, 262: 279-281.
Article
PubMed
CAS
Google Scholar
Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, Federici M, Federici A: Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci. 2005, 1043: 710-717. 10.1196/annals.1333.082.
Article
PubMed
CAS
Google Scholar
Meissner C, Ritz-Timme S: Molecular pathology and age estimation. Forensic Sci Int. 2010, 203: 34-43. 10.1016/j.forsciint.2010.07.010.
Article
PubMed
CAS
Google Scholar
Fraga MF, Esteller M: Epigenetics and aging: the targets and the marks. Trends Genet. 2007, 23: 413-418. 10.1016/j.tig.2007.05.008.
Article
PubMed
CAS
Google Scholar
Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M: Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005, 102: 10604-10609. 10.1073/pnas.0500398102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK, Kelsey KT: Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009, 5: e1000602-10.1371/journal.pgen.1000602.
Article
PubMed
PubMed Central
Google Scholar
Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, Warren ST: Age-associated DNA methylation in pediatric populations. Genome Res. 2012, 22: 623-632. 10.1101/gr.125187.111.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bork S, Pfister S, Witt H, Horn P, Korn B, Ho AD, Wagner W: DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell. 2010, 9: 54-63. 10.1111/j.1474-9726.2009.00535.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, McCann OT, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD: Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res. 2010, 20: 434-439. 10.1101/gr.103101.109.
Article
PubMed
CAS
PubMed Central
Google Scholar
Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M: Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res. 2010, 20: 440-446. 10.1101/gr.103606.109.
Article
PubMed
CAS
PubMed Central
Google Scholar
Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, Zhang N, Liang S, Donehower LA, Issa JP: Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 2010, 20: 332-340. 10.1101/gr.096826.109.
Article
PubMed
CAS
PubMed Central
Google Scholar
Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, Rossi DJ: Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell. 2013, 12: 413-425. 10.1016/j.stem.2013.01.017.
Article
PubMed
CAS
Google Scholar
Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K: Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013, 49: 359-367. 10.1016/j.molcel.2012.10.016.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bocklandt S, Lin W, Sehl ME, Sanchez FJ, Sinsheimer JS, Horvath S, Vilain E: Epigenetic predictor of age. PLoS ONE. 2011, 6: e14821-10.1371/journal.pone.0014821.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koch CM, Wagner W: Epigenetic-aging-signature to determine age in different tissues. Aging (Albany NY). 2011, 3: 1018-1027.
CAS
Google Scholar
Chen YA, Choufani S, Ferreira JC, Grafodatskaya D, Butcher DT, Weksberg R: Sequence overlap between autosomal and sex-linked probes on the Illumina HumanMethylation27 microarray. Genomics. 2011, 97: 214-222. 10.1016/j.ygeno.2010.12.004.
Article
PubMed
CAS
Google Scholar
Adkins RM, Thomas F, Tylavsky FA, Krushkal J: Parental ages and levels of DNA methylation in the newborn are correlated. BMC Med Genet. 2011, 12: 47-
Article
PubMed
CAS
PubMed Central
Google Scholar
Bibikova M, Le J, Barnes R, Saedinia-Melnyk S, Shou L, Zhen R, Gunderson KL: Genome-wide DNA methylation profiling using Infinium assay. Epigenomics. 2009, 1: 177-200. 10.2217/epi.09.14.
Article
PubMed
CAS
Google Scholar
Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS, Presser A, Nusbaum C, Xie X, Chi AS, Adli M, Kasif S, Ptaszek LM, Cowan CA, Lander ES, Koseki H, Bernstein BE: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 2008, 4: e1000242-10.1371/journal.pgen.1000242.
Article
PubMed
PubMed Central
Google Scholar
Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA: Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell. 2007, 1: 299-312. 10.1016/j.stem.2007.08.003.
Article
PubMed
CAS
Google Scholar
Teschendorff AE, West J, Beck S: Age-associated epigenetic drift: implications, and a case of epigenetic thrift?. Hum Mol Genet. 2013, 22: R7-R15. 10.1093/hmg/ddt375.
Article
PubMed
CAS
PubMed Central
Google Scholar
Day K, Waite LL, Thalacker-Mercer A, West A, Bamman MM, Brooks JD, Myers RM, Absher D: Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 2013, 14: R102-10.1186/gb-2013-14-9-r102.
Article
PubMed
PubMed Central
Google Scholar
Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, Van EK, van den Berg LH, Ophoff RA: Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 2012, 13: R97-10.1186/gb-2012-13-10-r97.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lam LL, Emberly E, Fraser HB, Neumann SM, Chen E, Miller GE, Kobor MS: Factors underlying variable DNA methylation in a human community cohort. Proc Natl Acad Sci U S A. 2012, 109: 17253-17260. 10.1073/pnas.1121249109.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, Delano D, Zhang L, Schroth GP, Gunderson KL, Fan JB, Shen R: High density DNA methylation array with single CpG site resolution. Genomics. 2011, 98: 288-295. 10.1016/j.ygeno.2011.07.007.
Article
PubMed
CAS
Google Scholar
Koch CM, Joussen S, Schellenberg A, Lin Q, Zenke M, Wagner W: Monitoring of cellular senescence by DNA-methylation at specific CpG sites. Aging Cell. 2012, 11: 366-369. 10.1111/j.1474-9726.2011.00784.x.
Article
PubMed
CAS
Google Scholar
Koch C, Reck K, Shao K, Lin Q, Joussen S, Ziegler P, Walenda G, Drescher W, Opalka B, May T, Brummendorf T, Zenke M, Saric T, Wagner W: Pluripotent stem cells escape from senescence-associated DNA methylation changes. Genome Res. 2013, 23: 248-259. 10.1101/gr.141945.112.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mallon BS, Chenoweth JG, Johnson KR, Hamilton RS, Tesar PJ, Yavatkar AS, Tyson LJ, Park K, Chen KG, Fann YC, McKay RD: StemCellDB: the human pluripotent stem cell database at the National Institutes of Health. Stem Cell Res. 2013, 10: 57-66. 10.1016/j.scr.2012.09.002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA: Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell. 2009, 4: 141-154. 10.1016/j.stem.2008.12.010.
Article
PubMed
CAS
Google Scholar
Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Ait-Hamou N, Leschik J, Pellestor F, Ramirez JM, De VJ, Lehmann S, Lemaitre JM: Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev. 2011, 25: 2248-2253. 10.1101/gad.173922.111.
Article
PubMed
CAS
PubMed Central
Google Scholar
Passtoors WM, Boer JM, Goeman JJ, Akker EB, Deelen J, Zwaan BJ, Scarborough A, Breggen R, Vossen RH, Houwing-Duistermaat JJ, Ommen GJ, Westendorp RG, Heemst D, Craen AJ, White AJ, Gunn DA, Beekman M, Slagboom PE: Transcriptional profiling of human familial longevity indicates a role for ASF1A and IL7R. PLoS ONE. 2012, 7: e27759-10.1371/journal.pone.0027759.
Article
PubMed
CAS
PubMed Central
Google Scholar
Online Calculator for the epigenetic aging signature. [http://www.molcell.rwth-aachen.de/epigenetic-aging-signature/]
MacKinney AA: Effect of aging on the peripheral blood lymphocyte count. J Gerontol. 1978, 33: 213-216. 10.1093/geronj/33.2.213.
Article
PubMed
Google Scholar
Mahlknecht U, Kaiser S: Age-related changes in peripheral blood counts in humans. Exp Ther Med. 2010, 1: 1019-1025.
PubMed
PubMed Central
Google Scholar
Reinius LE, Acevedo N, Joerink M, Pershagen G, Dahlen SE, Greco D, Soderhall C, Scheynius A, Kere J: Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS ONE. 2012, 7: e41361-10.1371/journal.pone.0041361.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bocker MT, Hellwig I, Breiling A, Eckstein V, Ho AD, Lyko F: Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood. 2011, 117: e182-e189. 10.1182/blood-2011-01-331926.
Article
PubMed
CAS
Google Scholar
Schmermund A, Möhlenkamp S, Stang A, Grönemeyer D, Seibel R, Hirche H, Mann K, Siffert W, Lauterbach K, Siegrist J, Jöckel KH, Erbel R: Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf Recall Study. Risk Factors, Evaluation of Coronary Calcium and Lifestyle. Am Heart J. 2002, 144: 212-218. 10.1067/mhj.2002.123579.
Article
PubMed
Google Scholar
Flegal KM, Kit BK, Orpana H, Graubard BI: Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013, 309: 71-82. 10.1001/jama.2012.113905.
Article
PubMed
CAS
Google Scholar
Pavanello S, Hoxha M, Dioni L, Bertazzi PA, Snenghi R, Nalesso A, Ferrara SD, Montisci M, Baccarelli A: Shortened telomeres in individuals with abuse in alcohol consumption. Int J Cancer. 2011, 129: 983-992. 10.1002/ijc.25999.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lee M, Martin H, Firpo MA, Demerath EW: Inverse association between adiposity and telomere length: The Fels Longitudinal Study. Am J Hum Biol. 2011, 23: 100-106. 10.1002/ajhb.21109.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kuningas M, Altmae S, Uitterlinden AG, Hofman A, van Duijn CM, Tiemeier H: The relationship between fertility and lifespan in humans. Age (Dordr). 2011, 33: 615-622. 10.1007/s11357-010-9202-4.
Article
Google Scholar
Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM: Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med. 1999, 190: 157-167. 10.1084/jem.190.2.157.
Article
PubMed
CAS
PubMed Central
Google Scholar
Brummendorf TH, Balabanov S: Telomere length dynamics in normal hematopoiesis and in disease states characterized by increased stem cell turnover. Leukemia. 2006, 20: 1706-1716. 10.1038/sj.leu.2404339.
Article
PubMed
CAS
Google Scholar
Calado RT, Young NS: Telomere diseases. N Engl J Med. 2009, 361: 2353-2365. 10.1056/NEJMra0903373.
Article
PubMed
CAS
PubMed Central
Google Scholar
Thompson RF, Atzmon G, Gheorghe C, Liang HQ, Lowes C, Greally JM, Barzilai N: Tissue-specific dysregulation of DNA methylation in aging. Aging Cell. 2010, 9: 506-518. 10.1111/j.1474-9726.2010.00577.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu L, Rando TA: Manifestations and mechanisms of stem cell aging. J Cell Biol. 2011, 193: 257-266. 10.1083/jcb.201010131.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rando TA, Chang HY: Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 2012, 148: 46-57. 10.1016/j.cell.2012.01.003.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kirkwood TB: Understanding the odd science of aging. Cell. 2005, 120: 437-447. 10.1016/j.cell.2005.01.027.
Article
PubMed
CAS
Google Scholar
Brummendorf TH, Maciejewski JP, Mak J, Young NS, Lansdorp PM: Telomere length in leukocyte subpopulations of patients with aplastic anemia. Blood. 2001, 97: 895-900. 10.1182/blood.V97.4.895.
Article
PubMed
CAS
Google Scholar
Erbel R, Möhlenkamp S, Möbus S, Schmermund A, Lehmann N, Stang A, Dragano N, Grönemeyer D, Seibel R, Kälsch H, Bröcker-Preuss M, Mann K, Siegrist J, Jöckel KH: Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010, 56: 1397-1406. 10.1016/j.jacc.2010.06.030.
Article
PubMed
Google Scholar
Zeeberg BR, Feng W, Wang G, Wang MD, Fojo AT, Sunshine M, Narasimhan S, Kane DW, Reinhold WC, Lababidi S, Bussey KJ, Riss J, Barrett JC, Weinstein JN: GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 2003, 4: R28-10.1186/gb-2003-4-4-r28.
Article
PubMed
PubMed Central
Google Scholar
Kuhn M: Building predictive models in R using the caret package. J Statist Software. 2008, 28: 1-26.
Article
Google Scholar
Baerlocher GM, Vulto I, De JG, Lansdorp PM: Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat Protoc. 2006, 1: 2365-2376. 10.1038/nprot.2006.263.
Article
PubMed
CAS
Google Scholar
Beier F, Balabanov S, Buckley T, Dietz K, Hartmann U, Rojewski M, Kanz L, Schrezenmeier H, Brummendorf TH: Accelerated telomere shortening in glycosylphosphatidylinositol (GPI)-negative compared with GPI-positive granulocytes from patients with paroxysmal nocturnal hemoglobinuria (PNH) detected by proaerolysin flow-FISH. Blood. 2005, 106: 531-533. 10.1182/blood-2004-10-3996.
Article
PubMed
CAS
Google Scholar
Comments
View archived comments (2)