Fischer U, Kucukoglu M, Helariutta Y, Bhalerao RP. The dynamics of cambial stem cell activity. Annu. Rev. Plant Biol. 2019;70:293–319.
Article
CAS
Google Scholar
Greb T, Lohmann JU. Plant stem cells. Curr Biol. 2016;26:R816–21.
Article
CAS
Google Scholar
Truskina J, Vernoux T. The growth of a stable stationary structure: coordinating cell behavior and patterning at the shoot apical meristem. Curr Opin Plant Biol. 2018;41:83–8.
Article
Google Scholar
Pfeiffer A, Wenzl C, Lohmann JU. Beyond flexibility: controlling stem cells in an ever changing environment. Curr Opin Plant Biol. 2017;35:117–23.
Article
Google Scholar
Motte H, Parizot B, Fang T, Beeckman T. The evolutionary trajectory of root stem cells. Curr Opin Plant Biol. 2020;53:23–30.
Article
Google Scholar
Bossinger G, Spokevicius AV. Sector analysis reveals patterns of cambium differentiation in poplar stems. J Exp Bot. 2018;69:4339–48.
Article
CAS
Google Scholar
Shi D, Lebovka I, López-Salmerón V, Sanchez P, Greb T. Bifacial cambium stem cells generate xylem and phloem during radial plant growth. Development. 2019;146:dev171355.
Article
Google Scholar
Smetana O, Makila R, Lyu M, Amiryousefi A, Sanchez Rodriguez F, Wu MF, et al. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature. 2019;565:485–9.
Article
CAS
Google Scholar
Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, Hennig L, et al. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev Cell. 2015;33:576–88.
Article
CAS
Google Scholar
Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A, Pisch M, et al. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev Cell. 2013;24:125–32.
Article
CAS
Google Scholar
Han H, Liu X, Zhou Y. Transcriptional circuits in control of shoot stem cell homeostasis. Curr Opin Plant Biol. 2020;53:50–6.
Article
CAS
Google Scholar
Aichinger E, Kornet N, Friedrich T, Laux T. Plant stem cell niches. Annu Rev Plant Biol. 2012;63:615–36.
Article
CAS
Google Scholar
Heidstra R, Sabatini S. Plant and animal stem cells: similar yet different. Nat Rev Mol Cell Biol. 2014;15:301–12.
Article
CAS
Google Scholar
Chiang M-H, Greb T. How to organize bidirectional tissue production? Curr Opin Plant Biol. 2019;51:15–21.
Article
CAS
Google Scholar
Xu B, Ohtani M, Yamaguchi M, Toyooka K, Wakazaki M, Sato M, et al. Contribution of NAC transcription factors to plant adaptation to land. Science. 2014;343:1505.
Article
CAS
Google Scholar
Zhong R, Demura T, Ye ZH. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell. 2006;18:3158–70.
Article
CAS
Google Scholar
Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell. 2008;20:2763–82.
Article
CAS
Google Scholar
Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MCP. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Dev Cell. 2019;48(840-852):e845.
Google Scholar
Jean-Baptiste K, McFaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L, Bubb KL, et al. Dynamics of gene expression in single root cells of Arabidopsis thaliana. Plant Cell. 2019;31:993–1011.
Article
CAS
Google Scholar
Ryu KH, Huang L, Kang HM, Schiefelbein J. Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiol. 2019;179:1444–56.
Article
CAS
Google Scholar
Shulse CN, Cole BJ, Ciobanu D, Lin J, Yoshinaga Y, Gouran M, et al. High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep. 2019;27(2241-2247):e2244.
Google Scholar
Turco GM, Rodriguez-Medina J, Siebert S, Han D, Valderrama-Gomez MA, Vahldick H, et al. Molecular mechanisms driving switch behavior in xylem cell differentiation. Cell Rep. 2019;28(342-351):e344.
Google Scholar
Wendrich JR, Yang B, Vandamme N, Verstaen K, Smet W, Van de Velde C, et al. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science. 2020;370:eaay4970.
Article
CAS
Google Scholar
Kim J-Y, Symeonidi E, Pang TY, Denyer T, Weidauer D, Bezrutczyk M, et al. Distinct identities of leaf phloem cells revealed by single cell transcriptomics. Plant Cell. 2021;33:511–30.
Article
Google Scholar
Xu X, Crow M, Rice BR, Li F, Harris B, Liu L, et al. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev Cell. 2021;56(557-568):e556.
Google Scholar
Liu Q, Liang Z, Feng D, Jiang S, Wang Y, Du Z, et al. Transcriptional landscape of rice roots at the single-cell resolution. Mol Plant. 2021;14:384–94.
Article
CAS
Google Scholar
Zhang TQ, Chen Y, Wang JW. A single-cell analysis of the Arabidopsis vegetative shoot apex. Dev Cell. 2021;56(1056-1074):e1058.
Google Scholar
Zhang T-Q, Chen Y, Liu Y, Lin W-H, Wang J-W. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nat Commun. 2021;12:2053.
Article
CAS
Google Scholar
Lopez-Anido CB, Vatén A, Smoot NK, Sharma N, Guo V, Gong Y, et al. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf. Dev Cell. 2021;56:1043–1055.e1044.
Article
CAS
Google Scholar
Zhang TQ, Xu ZG, Shang GD, Wang JW. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Mol Plant. 2019;12:648–60.
Article
CAS
Google Scholar
Chaffey N, Cholewa E, Regan S, Sundberg B. Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plant. 2002;114:594–600.
Article
CAS
Google Scholar
Nieminen KM, Kauppinen L, Helariutta Y. A weed for wood? Arabidopsis as a genetic model for xylem development. Plant Physiol. 2004;135:653–9.
Article
CAS
Google Scholar
Strabala TJ, MacMillan CP. The Arabidopsis wood model—the case for the inflorescence stem. Plant Sci. 2013;210:193–205.
Article
CAS
Google Scholar
Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M, Johnsson C, et al. AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. Plant Cell. 2017;29:1585–604.
Article
CAS
Google Scholar
Bollhöner B, Prestele J, Tuominen H. Xylem cell death: emerging understanding of regulation and function. J Exp Bot. 2012;63:1081–94.
Article
Google Scholar
Evert RF. Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development: Wiley; 2006.
Book
Google Scholar
Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. PNAS. 2018;115:6506.
Article
CAS
Google Scholar
Lin Y-C, Li W, Chen H, Li Q, Sun Y-H, Shi R, et al. A simple improved-throughput xylem protoplast system for studying wood formation. Nat Protoc. 2014;9:2194–205.
Article
CAS
Google Scholar
Lin YC, Li W, Sun YH, Kumari S, Wei H, Li Q, et al. SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. Plant Cell. 2013;25:4324–41.
Article
CAS
Google Scholar
Larson PR. The Vascular cambium: development and structure: Springer Science & Business Media; 2012.
Google Scholar
Blokhina O, Laitinen T, Hatakeyama Y, Delhomme N, Paasela T, Zhao L, et al. Ray parenchymal cells contribute to lignification of tracheids in developing xylem of Norway spruce. Plant Physiol. 2019;181:1552–72.
Article
CAS
Google Scholar
Pesquet E, Zhang B, Gorzsás A, Puhakainen T, Serk H, Escamez S, et al. Non-cell-autonomous postmortem lignification of tracheary elements in Zinnia elegans. Plant Cell. 2013;25:1314–28.
Article
CAS
Google Scholar
Barros J, Serk H, Granlund I, Pesquet E. The cell biology of lignification in higher plants. Ann Bot. 2015;115:1053–74.
Article
CAS
Google Scholar
Chen Y, Tong S, Jiang Y, Ai F, Feng Y, Zhang J, et al. Transcriptional landscape of highly lignified poplar stems at single-cell resolution. Genome Biol. 2021;22:319.
Article
CAS
Google Scholar
McQueen-Mason S, Durachko DM, Cosgrove DJ. Two endogenous proteins that induce cell wall extension in plants. Plant Cell. 1992;4:1425–33.
CAS
Google Scholar
Cho HT, Cosgrove DJ. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. PNAS. 2000;97:9783–8.
Article
CAS
Google Scholar
Scott DG. On the distribution of chlorophyll in the young shoots of woody plants. Ann Botany. 1907;os-21:437–9.
Article
Google Scholar
Berveiller D, Kierzkowski D, Damesin C. Interspecific variability of stem photosynthesis among tree species. Tree Physiol. 2007;27:53–61.
Article
CAS
Google Scholar
Avila E, Herrera A, Tezara W. Contribution of stem CO2 fixation to whole-plant carbon balance in nonsucculent species. Photosynthetica. 2014;52:3–15.
Article
CAS
Google Scholar
De Roo L, Salomón RL, Oleksyn J, Steppe K. Woody tissue photosynthesis delays drought stress in Populus tremula trees and maintains starch reserves in branch xylem tissues. New Phytol. 2020;228:70–81.
Article
Google Scholar
Zhu Y, Song D, Xu P, Sun J, Li L. A HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. Plant Biotechnol J. 2018;16:808–17.
Article
CAS
Google Scholar
Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M, et al. A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell. 2004;16:2278–92.
Article
CAS
Google Scholar
Tang X, Zhuang Y, Qi G, Wang D, Liu H, Wang K, et al. Poplar PdMYB221 is involved in the direct and indirect regulation of secondary wall biosynthesis during wood formation. Sci Rep. 2015;5:12240.
Article
CAS
Google Scholar
Yang L, Zhao X, Ran L, Li C, Fan D, Luo K. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Sci Rep. 2017;7:41209.
Article
CAS
Google Scholar
Baran Y, Bercovich A, Sebe-Pedros A, Lubling Y, Giladi A, Chomsky E, et al. MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions. Genome Biol. 2019;20:206.
Article
Google Scholar
Cronk QCB, Forest F. The evolution of angiosperm trees: from palaeobotany to genomics. In: Groover A, Cronk Q, editors. Comparative and evolutionary genomics of angiosperm trees. Cham: Springer International Publishing; 2017. p. 1–17.
Google Scholar
Strijk JS, Hinsinger DD, Zhang F, Cao K. Trochodendron aralioides, the first chromosome-level draft genome in Trochodendrales and a valuable resource for basal eudicot research. GigaScience. 2019;8:giz136.
Article
Google Scholar
Liang CB, Baas P, Wheeler EA, Shuming W. Wood anatomy of trees and shrubs from China. VI. Magnoliaceae. IAWA J. 1993;14:391–412.
Article
Google Scholar
Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–3587.e3529.
Article
CAS
Google Scholar
Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, et al. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 2005;19:1855–60.
Article
CAS
Google Scholar
Kondo Y, Tamaki T, Fukuda H. Regulation of xylem cell fate. Front Plant Sci. 2014;5:315.
Article
Google Scholar
Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature. 2010;465:316–21.
Article
CAS
Google Scholar
Nieminen K, Blomster T, Helariutta Y, Mähönen AP. Vascular cambium development. Arabidopsis Book. 2015;13:e0177.
Article
Google Scholar
Liebsch D, Sunaryo W, Holmlund M, Norberg M, Zhang J, Hall HC, et al. Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Development. 2014;141:4311–9.
Article
CAS
Google Scholar
Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL, Hernández-Hernández T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 2015;207:437–53.
Article
Google Scholar
Zhong R, Ye Z-H. Regulation of cell wall biosynthesis. Curr Opin Plant Biol. 2007;10:564–72.
Article
CAS
Google Scholar
Liu B, Wang JP. Tracheid-associated transcription factors in loblolly pine. Tree Physiol. 2020;40:700–3.
Article
CAS
Google Scholar
Wang HH, Tang RJ, Liu H, Chen HY, Liu JY, Jiang XN, et al. Chimeric repressor of PtSND2 severely affects wood formation in transgenic Populus. Tree Physiol. 2013;33:878–86.
Article
Google Scholar
Shi R, Wang JP, Lin YC, Li Q, Sun YH, Chen H, et al. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa. Planta. 2017;245:927–38.
Article
CAS
Google Scholar
Lin Y-CJ, Chen H, Li Q, Li W, Wang JP, Shi R, et al. Reciprocal cross-regulation of VND and SND multigene TF families for wood formation in Populus trichocarpa. PNAS. 2017;114:E9722.
Article
CAS
Google Scholar
Keren-Shaul H, Kenigsberg E, Jaitin DA, David E, Paul F, Tanay A, et al. MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat Protoc. 2019;14:1841–62.
Article
CAS
Google Scholar
Li H, Dai X, Huang X, Xu M, Wang Q, Yan X, et al. Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus. J Integr Plant Biol. 2021:n/a.
Zhu Y, Song D, Sun J, Wang X, Li L. PtrHB7, a class III HD-Zip gene, plays a critical role in regulation of vascular cambium differentiation in Populus. Mol Plant. 2013;6:1331–43.
Article
CAS
Google Scholar
Baima S, Possenti M, Matteucci A, Wisman E, Altamura MM, Ruberti I, et al. The arabidopsis ATHB-8 HD-zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol. 2001;126:643–55.
Article
CAS
Google Scholar
Li H-F, Chaw S-M, Du C-M, Ren Y. Vessel elements present in the secondary xylem of Trochodendron and Tetracentron (Trochodendraceae). Flora: Morphol Distrib Funct Ecol Plants. 2011;206:595–600.
Article
Google Scholar
Zhang Y, Klepsch M, Jansen S. Bordered pits in xylem of vesselless angiosperms and their possible misinterpretation as perforation plates. Plant Cell Environ. 2017;40:2133–46.
Article
CAS
Google Scholar
Johnsson C, Fischer U. Cambial stem cells and their niche. Plant Sci. 2016;252:239–45.
Article
CAS
Google Scholar
Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, Goué N, et al. A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant J. 2011;67:499–512.
Article
CAS
Google Scholar
Liu B, Liu J, Yu J, Wang Z, Sun Y, Li S, et al. Transcriptional reprogramming of xylem cell wall biosynthesis in tension wood. Plant Physiol. 2021;186:250–69.
Article
CAS
Google Scholar
Reid AJ, Talman AM, Bennett HM, Gomes AR, Sanders MJ, Illingworth CJR, et al. Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites. eLife. 2018;7:e33105.
Article
Google Scholar
Yeh C-S, Wang Z, Miao F, Ma H, Kao C-T, Hsu T-S, et al. A novel synthetic-genetic-array-based yeast one-hybrid system for high discovery rate and short processing time. Genome Res. 2019;29:1343–51.
Article
CAS
Google Scholar
Yu D, Huber W, Vitek O. Shrinkage estimation of dispersion in Negative Binomial models for RNA-seq experiments with small sample size. Bioinformatics. 2013;29:1275–82.
Article
CAS
Google Scholar
Robinson MD, Smyth GK. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics. 2007;23:2881–7.
Article
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc, B: Stat Methodol. 1995;57:289–300.
Google Scholar
Arend M, Fromm J. Seasonal change in the drought response of wood cell development in poplar. Tree Physiol. 2007;27:985–92.
Article
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.
Article
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.
Article
CAS
Google Scholar
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.
Article
CAS
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.
Article
CAS
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
Google Scholar
The Arabidopsis Information Resource. https://www.arabidopsis.org Accessed 30 Jan 2021.
Phytozome v13. https://phytozome-next.jgi.doe.gov Accessed 30 Jan 2021.
Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics. 2018;19:477.
Article
Google Scholar
Nadaraya EA. On estimating regression. Theory Probab Its Appl. 1964;9:141–2.
Article
Google Scholar
Watson GS. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series A (1961-2002). 1964;26:359–72.
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
Article
CAS
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinform. 2009;10:421.
Article
Google Scholar
Li L, Stoeckert CJ Jr, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89.
Article
CAS
Google Scholar
Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30:1575–84.
Article
CAS
Google Scholar
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–1902.e1821.
Article
CAS
Google Scholar
Friedman JH, Rafsky LC. Multivariate generalizations of the wald-wolfowitz and smirnov two-sample tests. Ann Stat. 1979;7:697–717.
Article
Google Scholar
Chen H, Chen X, Su Y. A weighted edge-count two-sample test for multivariate and object data. JASA. 2018;113:1146–55.
Article
CAS
Google Scholar
Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal Complex Syst. 2006;1695:1–9.
Google Scholar
Venables WN, Ripley BD. Univariate statistics. In: Modern applied statistics with S. edited by Venables WN, Ripley BD. New York, NY: Springer New York; 2002;107-138.
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16:278.
Article
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
Google Scholar
Nakamura T, Yamada KD, Tomii K, Katoh K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics. 2018;34:2490–2.
Article
CAS
Google Scholar
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
Article
CAS
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.
Article
CAS
Google Scholar
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.
Article
CAS
Google Scholar
Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:3022–7.
Article
CAS
Google Scholar
GigaDB. http://gigadb.org Accessed 30 Jan 2021.
Hardwood Genomics Project. https://hardwoodgenomics.org Accessed 30 Jan 2021.
Ensembl Genomes. http://ftp.ensemblgenomes.org/pub/plants/release-49 Accessed 30 Jan 2021.
Coffee Genome Hub. https://coffee-genome.org Accessed 30 Jan 2021.
Dryad Digital Repository. https://datadryad.org Accessed 30 Jan 2021.
MarpolBase. https://marchantia.info Accessed 30 Jan 2021.
TreeGenes. https://treegenesdb.org Accessed 30 Jan 2021.
Sol Genomics Network. https://solgenomics.net Accessed 30 Jan 2021.
Tung C-C, Kuo S-C, Yang C-L, Yu J-H, Huang C-E, Liou P-C, et al. Single-cell transcriptomics unveils xylem cell development and evolution: NCBI. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE180121; 2022.
Google Scholar
Lopez-Anido CB, Vatén A, Smoot NK, Sharma N, Guo V, Gong Y, et al. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf: NCBI. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE167135; 2021.
Book
Google Scholar
Ryu KH, Huang L, Kang HM, Schiefelbein J. Single-cell RNA sequencing resolves molecular relationships among individual plant cells: NCBI. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123013; 2019.
Book
Google Scholar
Zhang TQ, Chen Y, Liu Y, Lin WH, Wang JW. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root: NCBI. SRA. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA706435; 2021.
Book
Google Scholar
Chen Y, Tong S, Jiang Y, Ai F, Feng Y, Zhang J, et al. Transcriptional landscape of highly lignified poplar stems at single-cell resolution: NGDC. BioProject. https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA005543; 2021.
Book
Google Scholar
Shi R, Wang JP, Lin YC, Li Q, Sun YH, Chen H, et al. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa: NCBI. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81077; 2017.
Book
Google Scholar
Tung C-C, Kuo S-C, Yang C-L, Yu J-H, Huang C-E, Liou P-C, et al. Lin Y-CJ: Single-cell transcriptomics unveils xylem cell development and evolution. Zenodo. 2022. https://doi.org/10.5281/zenodo.7477911.
Tung C-C, Kuo S-C, Yang C-L, Yu J-H, Huang C-E, Liou P-C, et al. Single-cell transcriptomics unveils xylem cell development and evolution: GitHub. https://github.com/Woodformation1136/SingleCell; 2022.
Google Scholar