Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018;19:770–88.
Article
CAS
Google Scholar
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.
Article
CAS
Google Scholar
Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods. 2016;13:1029–35.
Article
CAS
Google Scholar
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71.
Article
CAS
Google Scholar
Lee HK, Willi M, Miller SM, Kim S, Liu C, Liu DR, et al. Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat Commun. 2018;9:4804.
Article
Google Scholar
Molla KA, Yang Y. CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications. Trends Biotechnol. 2019;37:1121–42.
Article
CAS
Google Scholar
Yang B, Yang L, Chen J. Development and Application of Base Editors. CRISPR J. 2019;2:91–104.
Article
Google Scholar
Huang TP, Zhao KT, Miller SM, Gaudelli NM, Oakes BL, Fellmann C, et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat Biotechnol. 2019;37:626–31.
Article
CAS
Google Scholar
Liu Z, Shan H, Chen S, Chen M, Song Y, Lai L, et al. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits. FASEB J. 2020;34:588–96.
Article
CAS
Google Scholar
Ren Q, Sretenovic S, Liu S, Tang X, Huang L, He Y, et al. PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nat Plants. 2021;7:25–33.
Article
CAS
Google Scholar
Tan J, Zhang F, Karcher D, Bock R. Engineering of high-precision base editors for site-specific single nucleotide replacement. Nat Commun. 2019;10:439.
Article
CAS
Google Scholar
Xu Z, Kuang Y, Ren B, Yan D, Yan F, Spetz C, et al. SpRY greatly expands the genome editing scope in rice with highly flexible PAM recognition. Genome Biol. 2021;22:6.
Article
CAS
Google Scholar
Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, et al. Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol. 2019;37:276–82.
Article
CAS
Google Scholar
Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol. 2020;38:883–91.
Article
CAS
Google Scholar
Wang X, Ding C, Yu W, Wang Y, He S, Yang B, et al. Cas12a Base Editors Induce Efficient and Specific Editing with Low DNA Damage Response. Cell Rep. 2020;31:107723.
Article
CAS
Google Scholar
Li X, Wang Y, Liu Y, Yang B, Wang X, Wei J, et al. Base editing with a Cpf1–cytidine deaminase fusion. Nat Biotechnol. 2018;36:324–7.
Article
CAS
Google Scholar
Wang G, Xu Z, Wang F, Huang Y, Xin Y, Liang S, et al. Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum). BMC Biol. 2022;20:45.
Article
Google Scholar
Xiong X, Li Z, Liang J, Liu K, Li C, Li J-F. A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants. Nucleic Acids Res. 2022;50:3565–80.
Article
CAS
Google Scholar
Gao, Caixia, Wang, Yanpeng. Base editing system and method based on cpf1 protein. WO2019120310A1. 2018.
Jing-wen W, Lang YFL, Xue-ping Z, Dao-wen W, Huan-bin Z. Optimization of CRISPR/Cas12a System and Development of It-mediated Adenine Base Editor in Rice. Biotechnol Bull. 2021;37:279–85.
Google Scholar
Xu, Jianping, Li, Jiang. Methods and compositions for dna base editing. WO2021056302A1. 2019.
Kock MA. Open intellectual property models for plant innovations in the context of new breeding technologies. Agronomy. 2021;11. Available from: https://www.mdpi.com/2073-4395/11/6/1218.
Koblan LW, Doman JL, Wilson C, Levy JM, Tay T, Newby GA, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. 2018;36:843–6.
Article
CAS
Google Scholar
Yan D, Ren B, Liu L, Yan F, Li S, Wang G, et al. High-efficiency and multiplex adenine base editing in plants using new TadA variants. Mol Plant. 2021;14:722–31.
Article
CAS
Google Scholar
Gaudelli NM, Lam DK, Rees HA, Solá-Esteves NM, Barrera LA, Born DA, et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat Biotechnol. 2020;38:892–900.
Article
CAS
Google Scholar
Schindele P, Puchta H. Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing. Plant Biotechnol J. 2020;18:1118–20.
Article
Google Scholar
Zhang L, Zuris JA, Viswanathan R, Edelstein JN, Turk R, Thommandru B, et al. AsCas12a ultra nuclease facilitates the rapid generation of therapeutic cell medicines. Nat Commun. 2021;12:3908.
Article
CAS
Google Scholar
Zhang X, Xu L, Fan R, Gao Q, Song Y, Lyu X, et al. Genetic editing and interrogation with Cpf1 and caged truncated pre-tRNA-like crRNA in mammalian cells. Cell Discov. 2018;4:36.
Article
Google Scholar
Jin S, Fei H, Zhu Z, Luo Y, Liu J, Gao S, et al. Rationally Designed APOBEC3B Cytosine Base Editors with Improved Specificity. Mol Cell. 2020;79:728–740.e6.
Article
CAS
Google Scholar
Coelho MA, Li S, Pane LS, Firth M, Ciotta G, Wrigley JD, et al. BE-FLARE: a fluorescent reporter of base editing activity reveals editing characteristics of APOBEC3A and APOBEC3B. BMC Biol. 2018;16:150.
Article
CAS
Google Scholar
Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. 2017;35:438–40.
Article
CAS
Google Scholar
Ren Q, Sretenovic S, Liu G, Zhong Z, Wang J, Huang L, et al. Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnol J. 2021;19:2052–68.
Article
CAS
Google Scholar
Zong Y, Song Q, Li C, Jin S, Zhang D, Wang Y, et al. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol. 2018;36:950–3.
Article
CAS
Google Scholar
Li C, Zong Y, Wang Y, Jin S, Zhang D, Song Q, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 2018;19:59.
Article
Google Scholar
Alok A, Sandhya D, Jogam P, Rodrigues V, Bhati KK, Sharma H, et al. The Rise of the CRISPR/Cpf1 System for Efficient Genome Editing in Plants. Front Plant Sci. 2020;11:264.
Article
Google Scholar
Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. Nat Plants. 2021;7:1166–87.
Article
CAS
Google Scholar
Shuai J, Yuan Z, Qiang G, Zixu Z, Yanpeng W, Peng Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science. 2019;364:292–5.
Article
Google Scholar
Port F, Starostecka M, Boutros M. Multiplexed conditional genome editing with Cas12a in Drosophila. Proc Natl Acad Sci U S A. 2020;117:22890.
Article
CAS
Google Scholar
Sretenovic S, Pan C, Tang X, Zhang Y, Qi Y. Rapid vector construction and assessment of BE3 and target-AID C to T base editing systems in rice protoplasts. In: Bandyopadhyay A, Thilmony R, editors. Rice Genome Engineering and Gene Editing: Methods and Protocols. New York: Springer US; 2021. p. 95–113. https://doi.org/10.1007/978-1-0716-1068-8_7.
Grünewald J, Zhou R, Garcia SP, Iyer S, Lareau CA, Aryee MJ, et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature. 2019;569:433–7.
Article
Google Scholar
Erwei Z, Yidi S, Wei W, Tanglong Y, Wenqin Y, Hao S, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science. 2019;364:289–92.
Article
Google Scholar
Li J, Yu W, Huang S, Wu S, Li L, Zhou J, et al. Structure-guided engineering of adenine base editor with minimized RNA off-targeting activity. Nat Commun. 2021;12:2287.
Article
CAS
Google Scholar
Kim D, Kim D, Lee G, Cho S-I, Kim J-S. Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat Biotechnol. 2019;37:430–5.
Article
CAS
Google Scholar
Li S, Liu L, Sun W, Zhou X, Zhou H. A large-scale genome and transcriptome sequencing analysis reveals the mutation landscapes induced by high-activity adenine base editors in plants. Genome Biol. 2022;23:51.
Article
Google Scholar
Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, et al. Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell. 2016;165:949–62.
Article
CAS
Google Scholar
Paul B, Chaubet L, Verver DE, Montoya G. Mechanics of CRISPR-Cas12a and engineered variants on λ-DNA. Nucleic Acids Res. 2022;50:5208–25.
Article
CAS
Google Scholar
Certo MT, Ryu BY, Annis JE, Garibov M, Jarjour J, Rawlings DJ, et al. Tracking genome engineering outcome at individual DNA breakpoints. Nat Methods. 2011;8:671–6.
Article
CAS
Google Scholar
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.
Article
CAS
Google Scholar
Lin Q, Zong Y, Xue C, Wang S, Jin S, Zhu Z, et al. Prime genome editing in rice and wheat. Nat Biotechnol. 2020;38:582–5.
Article
CAS
Google Scholar
Kurt IC, Zhou R, Iyer S, Garcia SP, Miller BR, Langner LM, et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat Biotechnol. 2021;39:41–6.
Article
CAS
Google Scholar
Zhao D, Li J, Li S, Xin X, Hu M, Price MA, et al. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol. 2021;39:35–40.
Article
CAS
Google Scholar
Lampropoulos A, Sutikovic Z, Wenzl C, Maegele I, Lohmann JU, Forner J. GreenGate - A Novel, Versatile, and Efficient Cloning System for Plant Transgenesis. PLoS One. 2013;8:e83043.
Article
Google Scholar
Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol. 2017;35:441–3.
Article
CAS
Google Scholar
Hu Z, Zhang T, Rombaut D, Decaestecker W, Xing A, D’Haeyer S, et al. Genome Editing-Based Engineering of CESA3 Dual Cellulose-Inhibitor-Resistant Plants. Plant Physiol. 2019;180:827–36.
Article
CAS
Google Scholar
Thuronyi BW, Koblan LW, Levy JM, Yeh W-H, Zheng C, Newby GA, et al. Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol. 2019;37:1070–9.
Article
CAS
Google Scholar
Karimi M, Bleys A, Vanderhaeghen R, Hilson P. Building Blocks for Plant Gene Assembly. Plant Physiol. 2007;145:1183–91.
Article
CAS
Google Scholar
Pertea M, Lin X, Salzberg SL. GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res. 2001;29:1185–90.
Article
CAS
Google Scholar
Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sánchez-León S, et al. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. 2017;89:1251–62.
Article
CAS
Google Scholar
Zhang H, Lu Y, Ma Y, Fu J, Wang G. Genetic and molecular control of grain yield in maize. Mol Breed. 2021;41:18.
Article
CAS
Google Scholar
Decaestecker W, Buono RA, Pfeiffer ML, Vangheluwe N, Jourquin J, Karimi M, et al. CRISPR-TSKO: A Technique for Efficient Mutagenesis in Specific Cell Types, Tissues, or Organs in Arabidopsis. Plant Cell. 2019;31:2868–87.
Article
CAS
Google Scholar
Xing H-L, Dong L, Wang Z-P, Zhang H-Y, Han C-Y, Liu B, et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 2014;14:327.
Article
Google Scholar
Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:343–5.
Article
CAS
Google Scholar
De Saeger J, Vermeersch M, Gaillochet C, Jacobs TB. Simple and efficient modification of Golden Gate design standards and parts using oligo stitching. ACS Synth Biol Am Chem Soc. 2022;11:2214–20.
Article
Google Scholar
Shan Q, Wang Y, Li J, Gao C. Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc. 2014;9:2395–410.
Article
CAS
Google Scholar
Cao J, Yao D, Lin F, Jiang M. PEG-mediated transient gene expression and silencing system in maize mesophyll protoplasts: a valuable tool for signal transduction study in maize. Acta Physiol Plant. 2014;36:1271–81.
Article
CAS
Google Scholar
Yoo S-D, Cho Y-H, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2007;2:1565–72.
Article
CAS
Google Scholar
Diebold ED, Buckley BW, Gossett DR, Jalali B. Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy. In: Optics in the Life Sciences. Optica Publishing Group; 2013. p. JW3B.3. Available from: http://opg.optica.org/abstract.cfm?URI=NTM-2013-JW3B.3.
Daniel S, Kuhn TM, Benedikt R, Marta R-M, Malte P, Keegan O, et al. High-speed fluorescence image–enabled cell sorting. Science. 2022;375:315–20.
Article
Google Scholar
Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991;19:1349.
Article
CAS
Google Scholar
Kluesner MG, Nedveck DA, Lahr WS, Garbe JR, Abrahante JE, Webber BR, et al. EditR: A Method to Quantify Base Editing from Sanger Sequencing. CRISPR J. 2018;1:239–50.
Article
CAS
Google Scholar
Faircloth BC, Glenn TC. Not All Sequence Tags Are Created Equal: Designing and Validating Sequence Identification Tags Robust to Indels. PLoS One. 2012;7:e42543.
Article
CAS
Google Scholar
Girardot C, Scholtalbers J, Sauer S, Su S-Y, Furlong EEM. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinformatics. 2016;17:419.
Article
Google Scholar
Bollier N, Buono RA, Jacobs TB, Nowack MK. Efficient simultaneous mutagenesis of multiple genes in specific plant tissues by multiplex CRISPR. bioRxiv. 2020;2020.11.13.381046.
Clement K, Rees H, Canver MC, Gehrke JM, Farouni R, Hsu JY, et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. 2019;37:224–6.
Article
CAS
Google Scholar
Sparks CA, Doherty A, Jones HD. Genetic transformation of wheat via agrobacterium-mediated DNA delivery. In: Henry RJ, Furtado A, editors. Cereal Genomics: Methods and Protocols. Totowa: Humana Press; 2014. p. 235–50. https://doi.org/10.1007/978-1-62703-715-0_19.
Ishida Y, Tsunashima M, Hiei Y, Komari T. Wheat (Triticum aestivum L.) transformation using immature embryos. In: Wang K, editor. Agrobacterium Protocols: Volume 1. New York: Springer New York; 2015. p. 189–98. https://doi.org/10.1007/978-1-4939-1695-5_15.
Jacobs T, Gaillochet C, Peña Fernández A, Goossens V, D’Halluin K, Drozdzecki A, et al. Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform. Series GSE200450. Gene Expression Omnibus. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE200450.