Yu M, Ren B. The three-dimensional organization of mammalian genomes. Annu Rev Cell Dev Biol. 2017;33(1):265–89 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28783961. Cited 2020 Apr 22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doğan ES, Liu C. Three-dimensional chromatin packing and positioning of plant genomes. Nat Plants. 2018;4:521–9 Palgrave Macmillan Ltd.
Article
PubMed
CAS
Google Scholar
Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature. 2001;414(6861):277–83.
Article
CAS
PubMed
Google Scholar
Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33:245–54 Available from: http://www.ncbi.nlm.nih.gov/pubmed/12610534. Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Matzke MA, Birchler JA. RNAi-mediated pathways in the nucleus. Nat Rev Genet. 2005;6:24–35.
Article
CAS
PubMed
Google Scholar
Lister R, Pelizzola M, Dowen R, Hawkins R, Hon G, Nery J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A. 2000;97(10):5237–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9:465–76.
Article
CAS
PubMed
Google Scholar
Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 2013;23(3):555–67 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23325432. Cited 2020 Apr 22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell. 2006;126(6):1189–201 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16949657. Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I, Callis J, et al. The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr Biol. 2007;17(4):379–84 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17239600. Cited 2020 Apr 22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao X, Jacobsen SE. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol. 2002;12(13):1138–44.
Article
CAS
PubMed
Google Scholar
Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet. 2010;11:204–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cuerda-Gil D, Slotkin RK. Non-canonical RNA-directed DNA methylation. Nat Plants. 2016;2:16163 Palgrave Macmillan Ltd.
Article
CAS
PubMed
Google Scholar
Wassenegger M, Heimes S, Riedel L, Sänger HL. RNA-directed de novo methylation of genomic sequences in plants. Cell. 1994;76(3):567–76.
Article
CAS
PubMed
Google Scholar
Huettel B, Kanno T, Daxinger L, Bucher E, van der Winden J, Matzke AJM, et al. RNA-directed DNA methylation mediated by DRD1 and Pol IVb: a versatile pathway for transcriptional gene silencing in plants. Biochim Biophys Acta Gene Struct Express. 2007;1769(5-6):358–74 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17449119. Cited 2020 Apr 22.
Article
CAS
Google Scholar
Pikaard CS, Haag JR, Ream T, Wierzbicki AT. Roles of RNA polymerase IV in gene silencing. Trends Plant Sci. 2008;13:390–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18514566. Cited 2020 Apr 22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Law JA, Ausin I, Johnson LM, Vashisht AA, Zhu JK, Wohlschlegel JA, et al. A protein complex required for polymerase V transcripts and RNA-directed DNA methylation in plants. Curr Biol. 2010;20(10):951–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci U S A. 1996;93(16):8449–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, et al. Arabidopsis MET1 cytosine methyltransferase mutants. Genetics. 2003;163(3):1109–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ebbs ML, Bender J. Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell. 2006;18(5):1166–76 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16582009. Cited 2020 Apr 22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henderson IR, Jacobsen SE. Epigenetic inheritance in plants. Nature. 2007;447:418–24 Nature Publishing Group.
Article
CAS
PubMed
Google Scholar
Du J, Zhong X, Bernatavichute YV, Stroud H, Feng S, Caro E, et al. Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell. 2012;151(1):167–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol. 2014;21(1):64–72.
Article
CAS
PubMed
Google Scholar
Stroud H, Greenberg MVC, Feng S, Bernatavichute YV, Jacobsen SE. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell. 2013;152(1–2):352–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, et al. The nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell. 2013;153(1):193–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woo HR, Pontes O, Pikaard CS, Richards EJ. VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. Genes Dev. 2007;21(3):267–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woo HR, Dittmer TA, Richards EJ. Three SRA-domain methylcytosine-binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in Arabidopsis. Kakutani T, editor. PLoS Genet. 2008;4(8) Available from: https://dx.plos.org/10.1371/journal.pgen.1000156. Cited 2020 Apr 22.
Bostick M, Jong KK, Estève PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science (80- ). 2007;317(5845):1760–4.
Article
CAS
Google Scholar
Sharif J, Muto M, Takebayashi SI, Suetake I, Iwamatsu A, Endo TA, et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007;450(7171):908–12 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17994007. Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Kraft E, Bostick M, Jacobsen SE, Callis J. ORTH/VIM proteins that regulate DNA methylation are functional ubiquitin E3 ligases. Plant J. 2008;56(5):704–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bronner C, Alhosin M, Hamiche A, Mousli M. Coordinated dialogue between UHRF1 and DNMT1 to ensure faithful inheritance of methylated DNA patterns. Genes. 2019;10(1):65 MDPI AG.
Article
PubMed Central
CAS
Google Scholar
Xue B, Zhao J, Feng P, Xing J, Wu H, Li Y. Epigenetic mechanism and target therapy of uhrf1 protein complex in malignancies. Onco Targets Ther. 2019;12:549–59 Dove Medical Press Ltd.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taniue K, Kurimoto A, Sugimasa H, Nasu E, Takeda Y, Iwasaki K, et al. Long noncoding RNA UPAT promotes colon tumorigenesis by inhibiting degradation of UHRF1. Proc Natl Acad Sci U S A. 2016;113(5):1273–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Ilin S, Wang W, Duncan EM, Wysocka J, Allis CD, et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature. 2006;442(7098):91–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peña PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani O, et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature. 2006;442(7098):100–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature. 2006;442(7098):96–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature. 2006;442(7098):86–90.
Article
CAS
PubMed
Google Scholar
Unoki M, Nishidate T, Nakamura Y. ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene. 2004;23(46):7601–10 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15361834. Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Shook MS, Richards EJ. VIM proteins regulate transcription exclusively through the MET1 cytosine methylation pathway. Epigenetics. 2014;9(7):980–6 Available from: http://www.tandfonline.com/doi/abs/10.4161/epi.28906. Cited 2020 Apr 22.
Article
PubMed
PubMed Central
Google Scholar
Soppe WJJ, Jasencakova Z, Houben A, Kakutani T, Meister A, Huang MS, et al. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J. 2002;21(23):6549–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tariq M, Saze H, Probst AV, Lichota J, Habu Y, Paszkowski J. Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc Natl Acad Sci U S A. 2003;100(15):8823–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deleris A, Stroud H, Bernatavichute Y, Johnson E, Klein G, Schubert D, et al. Loss of the DNA methyltransferase MET1 induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in Arabidopsis thaliana. PLoS Genet. 2012;8(11):e1003062.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Kim JH, Richards EJ, Chung KM, Woo HR. Arabidopsis VIM proteins regulate epigenetic silencing by modulating DNA methylation and histone modification in cooperation with MET1. Mol Plant. 2014;7(9):1470–85 Available from: http://www.cell.com/article/S1674205214609497/fulltext. Cited 2021 Feb 3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mathieu O, Probst AV, Paszkowski J. Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis. EMBO J. 2005;24(15):2783–91 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182238/?report=abstract. Cited 2020 Aug 22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaudin V, Libault M, Pouteau S, Juul T, Zhao G, Lefebvre D, et al. Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. Development. 2001;128(23):4847–58.
Article
CAS
PubMed
Google Scholar
Hsieh TF, Hakim O, Ohad N, Fischer RL. From flour to flower: how Polycomb group proteins influence multiple aspects of plant development. Trends Plant Sci. 2003;8:439–45 Elsevier Ltd.
Article
CAS
PubMed
Google Scholar
Turck F, Roudier F, Farrona S, Martin-Magniette M-L, Guillaume E, Buisine N, et al. Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet. 2007;3(6):e86 Available from: https://dx.plos.org/10.1371/journal.pgen.0030086. Cited 2020 Apr 22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Veluchamy A, Jégu T, Ariel F, Latrasse D, Mariappan KG, Kim SK, et al. LHP1 Regulates H3K27me3 spreading and shapes the three-dimensional conformation of the Arabidopsis genome. PLoS One. 2016;11(7):e0158936.
Article
PubMed
PubMed Central
CAS
Google Scholar
Berry S, Rosa S, Howard M, Bühler M, Dean C. Disruption of an RNA-binding hinge region abolishes LHP1-mediated epigenetic repression. Genes Dev. 2017;31(21):2115–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ariel F, Jegu T, Latrasse D, Romero-Barrios N, Christ A, Benhamed M, et al. Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop. Mol Cell. 2014;55(3):383–96.
Article
CAS
PubMed
Google Scholar
Ariel F, Lucero L, Christ A, Mammarella MF, Jegu T, Veluchamy A, et al. R-Loop Mediated trans action of the APOLO long noncoding RNA. Mol Cell. 2020;77(5):1055–1065.e4 Available from: http://www.ncbi.nlm.nih.gov/pubmed/31952990. Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Moison M, Pacheco JM, Lucero L, Fonouni-Farde C, Rodríguez-Melo J, Mansilla N, et al. The lncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold. Mol Plant. 2021;14(6):937–48.
Article
CAS
PubMed
Google Scholar
Ge SX, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36(8):2628–9 Available from: https://www.biorxiv.org/content/10.1101/315150v1.full. Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ. An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. Baxter I, editor. PLoS One. 2007;2(8):e718 Available from: https://dx.plos.org/10.1371/journal.pone.0000718. Cited 2020 Apr 22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Parent B, Tardieu F. Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytol. 2012;194(3):760–74 Available from: http://doi.wiley.com/10.1111/j.1469-8137.2012.04086.x. Cited 2020 Apr 22.
Article
PubMed
Google Scholar
Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, et al. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci U S A. 2011;108(50):20231–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, et al. The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci U S A. 2011;108(45):18512–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, et al. Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci U S A. 2010;107(19):8569–74 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20421476. Cited 2020 Apr 22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng Y, Dai X, Zhao Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006;20(13):1790–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu W, Xu H, Li K, Fan Y, Liu Y, Yang X, et al. The R-loop is a common chromatin feature of the Arabidopsis genome. Nat Plants. 2017;3(9):704–14 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28848233. Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Johnson LM, Du J, Hale CJ, Bischof S, Feng S, Chodavarapu RK, et al. SRA/SET domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature. 2014;507(7490):124–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gyula P, Baksa I, Tóth T, Mohorianu I, Dalmay T, Szittya G. Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through NF-YA2 and YUC2. Plant Cell Environ. 2018;41(10):2404–17.
Article
CAS
PubMed
Google Scholar
Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, et al. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A. 2010;107(19):8689–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fang J, Cheng J, Wang J, Zhang Q, Liu M, Gong R, et al. Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition. Nat Commun. 2016;7(1):1–12.
CAS
Google Scholar
Wang H, Cao D, Wu F. Long noncoding RNA UPAT promoted cell proliferation via increasing UHRF1 expression in non-small cell lung cancer. Oncol Lett. 2018;16(2):1491–8 Available from: http://genome.ucsc. Cited 2021 Jan 31.
CAS
PubMed
PubMed Central
Google Scholar
Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL. The Vienna RNA websuite. Nucleic Acids Res. 2008;36(Web Server issue):W70 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447809/. Cited 2022 Apr 17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, et al. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6(1) Available from: https://pubmed.ncbi.nlm.nih.gov/22115189/. Cited 2022 Apr 17.
Rigo R, Bazin J, Romero-Barrios N, Moison M, Lucero L, Christ A, et al. The Arabidopsis lnc RNA ASCO modulates the transcriptome through interaction with splicing factors. EMBO Rep. 2020;21(5):e48977.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bardou F, Ariel F, Simpson CG, Romero-Barrios N, Laporte P, Balzergue S, et al. Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Dev Cell. 2014;30(2):166–76 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25073154. Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Gray WM, Östin A, Sandberg G, Romano CP, Estelle M. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci U S A. 1998;95(12):7197–202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casal JJ, Balasubramanian S. Thermomorphogenesis. Annu Rev Plant Biol. 2019;70:321–46.
Article
CAS
PubMed
Google Scholar
Bellstaedt J, Trenner J, Lippmann R, Poeschl Y, Zhang X, Friml J, et al. A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiol. 2019;180(2):757–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar SV, Wigge PA. H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell. 2010;140(1):136–47.
Article
CAS
PubMed
Google Scholar
Cortijo S, Charoensawan V, Brestovitsky A, Buning R, Ravarani C, Rhodes D, et al. Transcriptional regulation of the ambient temperature response by H2A.Z nucleosomes and HSF1 transcription factors in Arabidopsis. Mol Plant. 2017;10(10):1258–73 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28893714. Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Pajoro A, Severing E, Angenent GC, Immink RGH. Histone H3 lysine 36 methylation affects temperature-induced alternative splicing and flowering in plants. Genome Biol. 2017;18(1):102 Available from: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1235-x. Cited 2020 Apr 22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steffen A, Staiger D. Chromatin marks and ambient temperature-dependent flowering strike up a novel liaison. Genome Biol. 2017;18(1):119.
Article
PubMed
PubMed Central
CAS
Google Scholar
Susila H, Nasim Z, Ahn JH. Ambient temperature-responsive mechanisms coordinate regulation of flowering time. Int J Mol Sci. 2018;19:3196 MDPI AG.
Article
PubMed Central
CAS
Google Scholar
Tasset C, Singh Yadav A, Sureshkumar S, Singh R, van der Woude L, Nekrasov M, et al. POWERDRESS-mediated histone deacetylation is essential for thermomorphogenesis in Arabidopsis thaliana. Queitsch C, editor. PLoS Genet. 2018;14(3):e1007280 Available from: https://dx.plos.org/10.1371/journal.pgen.1007280. Cited 2020 Apr 22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dubin MJ, Zhang P, Meng D, Remigereau MS, Osborne EJ, Casale FP, et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. Elife. 2015;4(MAY):e05255 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25939354. Cited 2020 Apr 22.
Article
PubMed
PubMed Central
Google Scholar
Kawakatsu T, Huang S, Shan C, Jupe F, Sasaki E, RJJ S, et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell. 2016;166(2):492–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen X, De Jonge J, Forsberg SKG, Pettersson ME, Sheng Z, Hennig L, et al. Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality. PLoS Genet. 2014;10(12):e1004842.
Article
PubMed
PubMed Central
CAS
Google Scholar
Popova OV, Dinh HQ, Aufsatz W, Jonak C. The RdDM pathway is required for basal heat tolerance in Arabidopsis. Mol Plant. 2013;6(2):396–410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naydenov M, Baev V, Apostolova E, Gospodinova N, Sablok G, Gozmanova M, et al. High-temperature effect on genes engaged in DNA methylation and affected by DNA methylation in Arabidopsis. Plant Physiol Biochem. 2015;87:102–8. https://doi.org/10.1016/j.plaphy.2014.12.022 Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Yu Y, Dong A, Shen WH. Molecular characterization of the tobacco SET domain protein NtSET1 unravels its role in histone methylation, chromatin binding, and segregation. Plant J. 2004;40(5):699–711.
Article
CAS
PubMed
Google Scholar
Liu S, Yu Y, Ruan Y, Meyer D, Wolff M, Xu L, et al. Plant SET- and RING-associated domain proteins in heterochromatinization. Plant J. 2007;52(5):914–26.
Article
CAS
PubMed
Google Scholar
Sidaway-Lee K, Costa MJ, Rand DA, Finkenstadt B, Penfield S. Direct measurement of transcription rates reveals multiple mechanisms for configuration of the Arabidopsis ambient temperature response. Genome Biol. 2014;15(3):R45 Available from: http://genomebiology.biomedcentral.com/articles/10.1186/gb-2014-15-3-r45. Cited 2020 Apr 22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rizzardi K, Landberg K, Nilsson L, Ljung K, Sundãs-Larsson A. TFL2/LHP1 is involved in auxin biosynthesis through positive regulation of YUCCA genes. Plant J. 2011;65(6):897–906 Available from: http://www.ncbi.nlm.nih.gov/pubmed/21251106. Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Chung BYW, Balcerowicz M, Di Antonio M, Jaeger KE, Geng F, Franaszek K, et al. An RNA thermoswitch regulates daytime growth in Arabidopsis. Nat Plants. 2020;6(5):522–32 Available from: https://www.nature.com/articles/s41477-020-0633-3. Cited 2021 Jan 31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fazzio TG. Regulation of chromatin structure and cell fate by R-loops. Transcription. 2016;7(4):121–6. https://doi.org/10.1080/21541264.2016.1198298.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crossley MP, Bocek M, Cimprich KA. R-loops as cellular regulators and genomic threats. Mol Cell. 2019;73(3):398–411. https://doi.org/10.1016/j.molcel.2019.01.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo H, Zhu G, Eshelman MA, Fung TK, Lai Q, Wang F, et al. HOTTIP-dependent R-loop formation regulates CTCF boundary activity and TAD integrity in leukemia. Mol Cell. 2022;82(4):833–851.e11 Available from: https://pubmed.ncbi.nlm.nih.gov/35180428/. Cited 2022 Apr 17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chalei V, Sansom SN, Kong L, Lee S, Montiel JF, Vance KW, et al. The long non-coding RNA Dali is an epigenetic regulator of neural differentiation. Elife. 2014;3(November):1–24.
Google Scholar
Arab K, Park YJ, Lindroth AM, Schäfer A, Oakes C, Weichenhan D, et al. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell. 2014;55(4):604–14.
Article
CAS
PubMed
Google Scholar
Arab K, Karaulanov E, Musheev M, Trnka P, Schäfer A, Grummt I, et al. GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nat Genet. 2019;51(2):217–23. https://doi.org/10.1038/s41588-018-0306-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohammad F, Mondal T, Guseva N, Pandey GK, Kanduri C. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development. 2010;137(15):2493–9.
Article
CAS
PubMed
Google Scholar
Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J, et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature. 2013;503(7476):371–6 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24107992. Cited 2020 Apr 22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ginno PA, Lott PL, Christensen HC, Korf I, Chédin F. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell. 2012;45(6):814–25 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3319272&tool=pmcentrez&rendertype=abstract. Cited 2020 Apr 22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grunseich C, Wang IX, Watts JA, Burdick JT, Guber RD, Zhu Z, et al. Senataxin mutation reveals how R-loops promote transcription by blocking DNA methylation at gene promoters. Mol Cell. 2018;69(3):426–437.e7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skourti-Stathaki K, Torlai Triglia E, Warburton M, Voigt P, Bird A, Pombo A. R-loops enhance polycomb repression at a subset of developmental regulator genes. Mol Cell. 2019;73(5):930-945.e4. Available from: https://doi.org/10.1016/j.molcel.2018.12.016
Smallwood A, Estève PO, Pradhan S, Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 2007;21(10):1169–78 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17470536. Cited 2020 Apr 22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nady N, Lemak A, Walker JR, Avvakumov GV, Kareta MS, Achour M, et al. Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. J Biol Chem. 2011;286(27):24300–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rothbart SB, Krajewski K, Nady N, Tempel W, Xue S, Badeaux AI, et al. Association of UHRF1 with H3K9 methylation directs the maintenance of DNA methylation. Nat Struct Mol Biol. 2012;19(11):1155–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishiyama A, Yamaguchi L, Sharif J, Johmura Y, Kawamura T, Nakanishi K, et al. Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature. 2013;502(7470):249–53 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24013172. Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Bashtrykov P, Jankevicius G, Jurkowska RZ, Ragozin S, Jeltsch A. The UHRF1 protein stimulates the activity and specificity of the maintenance DNA methyltransferase DNMT1 by an allosteric mechanism. J Biol Chem. 2014;289(7):4106–15 Available from: https://pubmed.ncbi.nlm.nih.gov/24368767/. Cited 2021 Jan 31.
Article
CAS
PubMed
Google Scholar
Zhao Q, Zhang J, Chen R, Wang L, Li B, Cheng H, et al. Dissecting the precise role of H3K9 methylation in crosstalk with DNA maintenance methylation in mammals. Nat Commun. 2016;7(1):1–12.
Google Scholar
Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta Gene Regul Mech. 2014;1839:1362–72 Elsevier.
Article
CAS
PubMed Central
Google Scholar
Yao Y, Bilichak A, Golubov A, Kovalchuk I. ddm1 plants are sensitive to methyl methane sulfonate and NaCl stresses and are deficient in DNA repair. Plant Cell Rep. 2012;31(9):1549–61.
Article
PubMed
CAS
Google Scholar
Piacentini L, Fanti L, Negri R, Del Vescovo V, Fatica A, Altieri F, et al. Heterochromatin Protein 1 (HP1a) positively regulates euchromatic gene expression through RNA transcript association and interaction with hnRNPs in Drosophila. PLoS Genet. 2009;5(10):e1000670 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19798443. Cited 2020 Apr 22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shuai T, Khan MR, Zhang XD, Li J, Thorne RF, Wu M, et al. lncRNA TRMP-S directs dual mechanisms to regulate p27-mediated cellular senescence. Mol Ther - Nucleic Acids. 2021;24:971–85. Available from: http://www.cell.com/article/S2162253121000986/fulltext. Cited 2022 Apr 17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roulé T, Christ A, Hussain N, Huang Y, Hartmann C, Benhamed M, et al. The lncRNA MARS modulates the epigenetic reprogramming of the marneral cluster in response to ABA. Mol Plant. 2022; Available from: https://pubmed.ncbi.nlm.nih.gov/35150931/. Cited 2022 Apr 17.
Antunez-Sanchez J, Naish M, Ramirez-Prado JS, Ohno S, Huang Y, Dawson A, et al. A new role for histone demethylases in the maintenance of plant genome integrity. Elife. 2020;9:1–32.
Article
Google Scholar
Déléris A, Berger F, Duharcourt S. Role of Polycomb in the control of transposable elements. Trends Genet. 2021:1–8. https://doi.org/10.1016/j.tig.2021.06.003.
Wang Y, Fan X, Lin F, He G, Terzaghi W, Zhu D, et al. Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proc Natl Acad Sci U S A. 2014;111(28):10359–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Severing E, Faino L, Jamge S, Busscher M, Kuijer-Zhang Y, Bellinazzo F, et al. Arabidopsis thaliana ambient temperature responsive lncRNAs. BMC Plant Biol. 2018;18(1):145.
Article
PubMed
PubMed Central
CAS
Google Scholar
Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 2008;16(6):735–43.
Article
Google Scholar
Lampropoulos A, Sutikovic Z, Wenzl C, Maegele I, Lohmann JU, Forner J. GreenGate - a novel, versatile, and efficient cloning system for plant transgenesis. Janssen PJ, editor. PLoS One. 2013;8(12):e83043 Available from: https://dx.plos.org/10.1371/journal.pone.0083043. Cited 2020 Apr 22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 2014;79(2):348–59.
Article
CAS
PubMed
Google Scholar
Morineau C, Bellec Y, Tellier F, Gissot L, Kelemen Z, Nogué F, et al. Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J. 2017;15(6):729–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waadt R, Kudla J. In planta visualization of protein interactions using bimolecular fluorescence complementation (BiFC). Cold Spring Harb Protoc. 2008;3(4) Available from: http://www.ncbi.nlm.nih.gov/pubmed/21356813. Cited 2020 Apr 22.
Liu ZW, Zhao N, Su YN, Chen SS, He XJ. Exogenously overexpressed intronic long noncoding RNAs activate host gene expression by affecting histone modification in Arabidopsis. Sci Rep. 2020;10(1):1–12. https://doi.org/10.1038/s41598-020-59697-7.
Article
CAS
Google Scholar
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82 Nature Publishing Group. Available from: https://www.nature.com/articles/nmeth.2019. Cited 2021 Jan 31.
Article
CAS
PubMed
Google Scholar
Chu C, Quinn J, Chang HY. Chromatin isolation by RNA purification (ChIRP). J Vis Exp. 2012;(61):3912.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28(24):3211–7 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23071270. Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Cheng C-Y, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J. 2017;89(4):789–804 Available from: http://doi.wiley.com/10.1111/tpj.13415. Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550 Available from: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8. Cited 2020 Apr 22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kolde R. pheatmap: Pretty Heatmaps version 1.0.12 from CRAN. 2019. https://CRAN.R-project.org/package=pheatmap. Available from: https://rdrr.io/cran/pheatmap/. Cited 2021 Feb 20.
Google Scholar
Sorenson R, Bailey-Serres J. Rapid immunopurification of ribonucleoprotein complexes of plants. Methods Mol Biol. 2015;1284:209–19 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25757774. Cited 2020 Apr 22.
Article
CAS
PubMed
Google Scholar
Nagymihály M, Veluchamy A, Györgypál Z, Ariel F, Jégu T, Benhamed M, et al. Ploidy-dependent changes in the epigenome of symbiotic cells correlate with specific patterns of gene expression. Proc Natl Acad Sci U S A. 2017;114(17):4543–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28404731. Cited 2020 Apr 22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fonouni-Farde C, Christ A, Blein T, Ariel F. The lncRNA APOLO and the methylcytosine-binding protein VIM1 are thermomorphogenesis regulators. Dataset GSE167879. Samples of WT 23°C and 29°C, OE APOLO-1 and vim1-3. 2021. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE167879.
Fonouni-Farde C, Christ A, Blein T, Ariel F. The Human UPAT and the Arabidopsis APOLO lncRNA regulated a comparable set of genes in Arabidopsis. Dataset GSE210828. Samples of WT, OE APOLO-1 and OE UPAT-1. 2022. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE210828.
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–8 Available from: http://www.sciepub.com/reference/159691. Cited 2022 Aug 10.
CAS
Google Scholar