Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013; 152(6):1237–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitchell PJ, Tjian R. Transcriptional regulation in mammalian cells. Science. 1989; 245(4916):371–8.
Article
CAS
PubMed
Google Scholar
Rohs R, West SM, Sosinsky A, Liu P, Mann RS, Honig B. The role of DNA shape in protein-DNA recognition. Nature. 2009; 461(7268):1248.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones S, van Heyningen P, Berman HM, Thornton JM. Protein-DNA interactions: a structural analysis. J Mol Biol. 1999; 287(5):877–96.
Article
CAS
PubMed
Google Scholar
Weirauch MT, Cote A, Norel R, Annala M, et al.Evaluation of methods for modeling transcription factor sequence specificity. Nat Biotechnol. 2013; 31(2):126–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samee MAH, Bruneau BG, Pollard KS. A de novo shape motif discovery algorithm reveals preferences of transcription factors for DNA shape beyond sequence motifs. Cell Syst. 2019; 8(1):27–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007; 316(5830):1497–502.
Article
CAS
PubMed
Google Scholar
Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013; 10(12):1213–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pique-Regi R, Degner JF, Pai AA, Gaffney DJ, et al.Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res. 2011; 21(3):447–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gusmao EG, Allhoff M, Zenke M, Costa IG. Analysis of computational footprinting methods for DNase sequencing experiments. Nat Methods. 2016; 13(4):303–9.
Article
PubMed
CAS
Google Scholar
Chen X, Yu B, Carriero N, Silva C, Bonneau R. Mocap: Large-scale inference of transcription factor binding sites from chromatin accessibility. Nucleic Acids Res. 2017; 45(8):4315.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amariuta T, Luo Y, Gazal S, Davenport EE, van de Geijn B, Ishigaki K, Westra H-J, Teslovich N, Okada Y, Yamamoto K, et al.IMPACT: genomic annotation of cell-state-specific regulatory elements inferred from the epigenome of bound transcription factors. Am J Hum Genet. 2019; 104(5):879–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
ENCODE-DREAM in vivo Transcription Factor Binding Site Prediction Challenge. 2017. https://synapse.org/encode. Accessed 31 Jan 2018.
Cao C, Chicco D, Hoffman MM. The MCC-F1 curve: a performance evaluation technique for binary classification. arXiv 2006.11278. 2020. http://arxiv.org/abs/2006.11278.
Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta (BBA)-Protein Struct. 1975; 405(2):442–51.
Article
CAS
Google Scholar
Chicco D. Ten quick tips for machine learning in computational biology. BioData Mining. 2017; 10:35.
Article
PubMed
PubMed Central
Google Scholar
Lundberg SM, Tu WB, Raught B, Penn LZ, Hoffman MM, Lee S-I. ChromNet: learning the human chromatin network from all ENCODE ChIP-seq data. Genome Biol. 2016; 17:82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al.The human transcription factors. Cell. 2018; 172(4):650–65.
Article
CAS
PubMed
Google Scholar
Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature. 2015; 518(7539):317–30.
Article
PubMed Central
CAS
Google Scholar
Mei S, Qin Q, Wu Q, Sun H, et al.Cistrome Data Browser: a data portal for ChIP-seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 2017; 45(D1):658–62.
Article
CAS
Google Scholar
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012; 489(7414):57–74.
Article
CAS
Google Scholar
Barretina J, Caponigro G, Stransky N, Venkatesan K, et al.The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity. Nature. 2012; 483(7391):603–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, et al.Landscape of transcription in human cells. Nature. 2012; 489(7414):101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheffield NC, et al.Patterns of regulatory activity across diverse human cell types predict tissue identity, transcription factor binding, and long-range interactions. Genome Res. 2013; 23(5):777–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou W, Sherwood B, Ji Z, Xue Y, et al.Genome-wide prediction of DNase I hypersensitivity using gene expression. Nat Commun. 2017; 8(1):1038.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thurman RE, Rynes E, Humbert R, Vierstra J, et al.The accessible chromatin landscape of the human genome. Nature. 2012; 489(7414):75–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers J, Gibbs RA. Comparative primate genomics: emerging patterns of genome content and dynamics. Nat Rev Genet. 2014; 15(5):347–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, et al.Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005; 15(8):1034–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010; 20(1):110–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Q, Brown JB, Huang H, Bickel PJ, et al.Measuring reproducibility of high-throughput experiments. Ann Appl Stat. 2011; 5(3):1752–79.
Article
Google Scholar
Quang D, Xie X. FactorNet: a deep learning framework for predicting cell type specific transcription factor binding from nucleotide-resolution sequential data. Methods. 2019; 166:40–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keilwagen J, Posch S, Grau J. Accurate prediction of cell type-specific transcription factor binding. Genome Biol. 2019; 20:9.
Article
PubMed
PubMed Central
Google Scholar
Schreiber J, Bilmes J, Noble WS. Completing the ENCODE3 compendium yields accurate imputations across a variety of assays and human biosamples. Genome Biol. 2020; 21:82.
Article
PubMed
PubMed Central
Google Scholar
Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nat Rev Genet. 2004; 5(4):276.
Article
CAS
PubMed
Google Scholar
Kidder BL, Hu G, Zhao K. ChIP-seq: technical considerations for obtaining high-quality data. Nat Immunol. 2011; 12(10):918–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teytelman L, Thurtle DM, Rine J, van Oudenaarden A. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Natl Acad Sci. 2013; 110(46):18602–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Savic D, Partridge CE, Newberry KM, Smith SB, et al.CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins. Genome Res. 2015; 25(10):1581–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Pan Z, Ying Y, Xie Z, Adhikari S, et al.Deep-learning augmented RNA-seq analysis of transcript splicing. Nat Methods. 2019; 16(4):307–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schneider VA, Graves-Lindsay T, Howe K, Bouk N, et al.Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 2017; 27(5):849–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Madani Tonekaboni SA, Mazrooei P, Kofia V, Haibe-Kains B, Lupien M. Identifying clusters of cis-regulatory elements underpinning TAD structures and lineage-specific regulatory networks. Genome Res. 2019; 29(10):1733–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
W. Kent J, Sugnet CW, Furey TS, Roskin KM, et al.The human genome browser at UCSC. Genome Res. 2002; 12(6):996–1006.
Article
CAS
Google Scholar
Grant CE, et al.FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011; 27(7):1017–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mathelier A, Fornes O, Arenillas DJ, Chen C. -y., Denay G, et al.JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2016; 44(D1):110–5.
Article
CAS
Google Scholar
Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE. 2015; 10(3):0118432.
Article
CAS
Google Scholar
Smirnov P, Safikhani Z, El-Hachem N, Wang D, et al.PharmacoGx: an R package for analysis of large pharmacogenomic datasets. Bioinformatics. 2015; 32(8):1244–6.
Article
PubMed
CAS
Google Scholar
Lin LI-K. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989; 45(1):255–68.
Article
CAS
PubMed
Google Scholar
Zhang Y, Liu T, Meyer CA, Eeckhoute J, et al.Model-based analysis of ChIP-seq (MACS). Genome Biol. 2008; 9:R137.
Article
PubMed
PubMed Central
CAS
Google Scholar
Champely S. Pwr: basic functions for power analysis. 2017. R package version 1.2-1. https://cran.r-project.org/web/packages/pwr/. Accessed 1 Feb 2018.
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. Proc Mach Learn Res. 2010; 9:249–56.
Google Scholar
Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv 1412.6980. 2014. http://arxiv.org/abs/1412.6980.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.Scikit-learn: machine learning in Python. J Mach Learn Res. 2011; 12:2825–30.
Google Scholar
Saito T, Rehmsmeier M. Precrec: fast and accurate precision–recall and ROC curve calculations in R. Bioinformatics. 2017; 33(1):145–7.
Article
CAS
PubMed
Google Scholar
Saporta G, Youness G. Comparing two partitions: some proposals and experiments. In: Proceedings in Computational Statistics. Heidelberg: Springer: 2002. p. 243–8.
Google Scholar
Wickham H. Ggplot2: Elegant Graphics for Data Analysis. New York: Springer; 2009.
Book
Google Scholar
Neuwirth E. RColorBrewer: ColorBrewer Palettes. 2014. R package version 1.1-2. https://cran.r-project.org/web/packages/RColorBrewer/. Accessed 1 Feb 2018.
Filtz TM, Vogel WK, Leid M. Regulation of transcription factor activity by interconnected post-translational modifications. Trends Pharmacol Sci. 2014; 35(2):76–85.
Article
CAS
PubMed
Google Scholar
Kulakovskiy IV, Vorontsov IE, Yevshin IS, Sharipov RN, et al.HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-seq analysis. Nucleic Acids Res. 2018; 46(D1):252–9.
Article
CAS
Google Scholar
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, et al.STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019; 47(D1):607–13.
Article
CAS
Google Scholar
Bailey TL, Machanick P. Inferring direct DNA binding from ChIP-seq. Nucleic Acids Res. 2012; 40(17):e128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014; 20(12):1983–92.
Article
PubMed
PubMed Central
Google Scholar
Breiman L. Random forests. Mach Learn. 2001; 45(1):5–32.
Article
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, et al.Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005; 102(43):15545–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raposo AA, Vasconcelos FF, Drechsel D, Marie C, et al.Ascl1 coordinately regulates gene expression and the chromatin landscape during neurogenesis. Cell Rep. 2015; 10(9):1544–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watson LA, Wang X, Elbert A, Kernohan KD, et al.Dual effect of CTCF loss on neuroprogenitor differentiation and survival. J Neurosci. 2014; 34(8):2860–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamar E, Kintner C. The Notch targets Esr1 and Esr10 are differentially regulated in Xenopus neural precursors. Development. 2005; 132(16):3619–30.
Article
CAS
PubMed
Google Scholar
Ferri ALM, Lin W, Mavromatakis YE, Wang JC, et al.Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development. 2007; 134(15):2761–9.
Article
CAS
PubMed
Google Scholar
Willett RT, Greene LA. Gata2 is required for migration and differentiation of retinorecipient neurons in the superior colliculus. J Neurosci. 2011; 31(12):4444–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishii S, Hashimoto-Torii K. HSF modulates neural development under normal and stress conditions. In: Heat Shock Factor. Tokyo: Springer: 2016. p. 115–29.
Google Scholar
Quintanilla RA, Utreras E, Cabezas-Opazo FA. Role of PPAR γ in the differentiation and function of neurons. PPAR Res. 2014; 2014:768594.
Article
PubMed
PubMed Central
Google Scholar
Lee S, Shen R, Cho H-H, Kwon R-J, et al.STAT3 promotes motor neuron differentiation by collaborating with motor neuron-specific LIM complex. Proc Natl Acad Sci. 2013; 110(28):11445–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Achim K, Peltopuro P, Lahti L, Tsai H-H, et al.The role of tal2 and tal1 in the differentiation of midbrain GABAergic neuron precursors. Biol Open. 2013; 2(10):990–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao X, Pfaff SL, Gage FH. YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev. 2008; 22(23):3320–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X-L, Huang C-X, Zhang J, Inoue A, et al.CtBP1 is involved in epithelial-mesenchymal transition and is a potential therapeutic target for hepatocellular carcinoma. Oncol Rep. 2013; 30(2):809–14.
Article
CAS
PubMed
Google Scholar
Enkhbaatar Z, Terashima M, Oktyabri D, Tange S, et al.KDM5B histone demethylase controls epithelial-mesenchymal transition of cancer cells by regulating the expression of the microRNA-200 family. Cell Cycle. 2013; 12(13):2100–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu W, Huang C, Wang Q, Huang T, et al.MEF2 transcription factors promotes EMT and invasiveness of hepatocellular carcinoma through TGF- β1 autoregulation circuitry. Tumor Biol. 2014; 35(11):10943–51.
Article
CAS
Google Scholar
Kachroo P, Lee M-H, Zhang L, Baratelli F, et al.IL-27 inhibits epithelial-mesenchymal transition and angiogenic factor production in a STAT1-dominant pathway in human non-small cell lung cancer. J Exp Clin Cancer Res. 2013; 32:97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin C-C, Bradstreet TR, Schwarzkopf EA, Sim J, et al.Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation. Nat Commun. 2014; 5:3551.
Article
PubMed
CAS
Google Scholar
Huggins CJ, Malik R, Lee S, Salotti J, et al.C/EBP γ suppresses senescence and inflammatory gene expression by heterodimerizing with C/EBP β. Mol Cell Biol. 2013; 33(16):3242–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darsigny M, St-Jean S, Boudreau F. Cux1 transcription factor is induced in inflammatory bowel disease and protects against experimental colitis. Inflamm Bowel Dis. 2010; 16(10):1739–50.
Article
PubMed
Google Scholar
Kasza A, Wyrzykowska P, Horwacik I, Tymoszuk P, et al.Transcription factors Elk-1 and SRF are engaged in IL1-dependent regulation of ZC3H12A expression. BMC Mol Biol. 2010; 11:14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Balli D, Ren X, Chou F-S, Cross E, et al.Foxm1 transcription factor is required for macrophage migration during lung inflammation and tumor formation. Oncogene. 2012; 31(34):3875–88.
Article
CAS
PubMed
Google Scholar
Kaminska B. Molecular characterization of inflammation-induced JNK/c-Jun signaling pathway in connection with tumorigenesis. Methods Mol Biol. 2009; 512:249–64.
Article
CAS
PubMed
Google Scholar
Cook HT, Tarzi R, D’Souza Z, Laurent G, et al.AP-1 transcription factor JunD confers protection from accelerated nephrotoxic nephritis and control podocyte-specific Vegfa expression. Am J Pathol. 2011; 179(1):134–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yazdani S, Karimfar MH, Imani Fooladi AA, Mirbagheri L, et al.Nuclear factor κB1/RelA mediates the inflammation and/or survival of human airway exposed to sulfur mustard. J Receptors Signal Transduct. 2011; 31(5):367–73.
Article
CAS
Google Scholar
Marei HES, Ahmed A-E. Transcription factors expressed in embryonic and adult olfactory bulb neural stem cells reveal distinct proliferation, differentiation and epigenetic control. Genomics. 2013; 101(1):12–9.
Article
CAS
PubMed
Google Scholar
Lachén-Montes M, González-Morales A, Victoria Zelaya M, Pérez-Valderrama E, et al.Olfactory bulb neuroproteomics reveals a chronological perturbation of survival routes and a disruption of prohibitin complex during Alzheimer’s disease progression. Sci Rep. 2017; 7:9115.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bhat S, Jones WD. An accelerated miRNA-based screen implicates Atf-3 in Drosophila odorant receptor expression. Sci Rep. 2016; 6:20109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Witteveen JS, Willemsen MH, Dombroski TCD, Van Bakel NHM, et al.Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity. Nat Genet. 2016; 48(8):877–87.
Article
CAS
PubMed
Google Scholar
Vincent AJ, Taylor JM, Choi-Lundberg DL, West AK, Chuah MI. Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes. Glia. 2005; 51(2):132–47.
Article
PubMed
Google Scholar
Feng C, Li J, Zuo Z. Expression of the transcription factor regulatory factor X1 in the mouse brain. Folia Histochem Cytobiol. 2011; 49(2):344–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ward JM, Rose K, Montgomery C, Adrianto I, et al.Disease activity in systemic lupus erythematosus correlates with expression of the transcription factor AT-rich–interactive domain 3A. Arthritis Rheumatol. 2014; 66(12):3404–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen AY, Sakamoto KM, Miller LS. The role of the transcription factor CREB in immune function. J Immunol. 2010; 185(11):6413–9.
Article
CAS
PubMed
Google Scholar
McMahon SB, Monroe JG. The role of early growth response gene 1 (EGR-1) in regulation of the immune response. J Leukoc Biol. 1996; 60(2):159–66.
Article
CAS
PubMed
Google Scholar
Masumi A, Wang I-M, Lefebvre B, Yang X-J, et al.The histone acetylase PCAF is a phorbol-ester-inducible coactivator of the IRF family that confers enhanced interferon responsiveness. Mol Cell Biol. 1999; 19(3):1810–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Su C-H, Lin I-H, Tzeng T-Y, Hsieh W-T, Hsu M-T. Regulation of IL-20 expression by estradiol through KMT2B-mediated epigenetic modification. PLoS ONE. 2016; 11(11):0166090.
Google Scholar
Massrieh W, Derjuga A, Doualla-Bell F, Ku C-Y, et al.Regulation of the MAFF transcription factor by proinflammatory cytokines in myometrial cells. Biol Reprod. 2006; 74(4):699–705.
Article
CAS
PubMed
Google Scholar
Villard J, Peretti M, Masternak K, Barras E, et al.A functionally essential domain of RFX5 mediates activation of major histocompatibility complex class II promoters by promoting cooperative binding between RFX and NF-Y. Mol Cell Biol. 2000; 20(10):3364–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma F, Liu S-Y, Razani B, Arora N, et al.Retinoid X receptor α attenuates host antiviral response by suppressing type I interferon. Nat Commun. 2014; 5:5494.
Article
CAS
PubMed
Google Scholar
Xie L. MKL1/2 and ELK4 co-regulate distinct serum response factor (SRF) transcription programs in macrophages. BMC Genomics. 2014; 15(1):301.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yoshida S, Aihara K. -i., Ikeda Y, Sumitomo-Ueda Y, et al.Androgen receptor promotes gender-independent angiogenesis in response to ischemia and is required for activation of VEGF receptor signaling. Circulation. 2013; 128(1):60–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2011; 2(12):1117–33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang L, Yin M, Wei X, Liu J, et al.Bach1 represses Wnt/ β-catenin signaling and angiogenesis. Circ Res. 2015; 117(4):364–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawai H, Li H, Chun P, Avraham S, Avraham HK. Direct interaction between BRCA1 and the estrogen receptor regulates vascular endothelial growth factor (VEGF) transcription and secretion in breast cancer cells. Oncogene. 2002; 21(50):7730.
Article
CAS
PubMed
Google Scholar
Huang M, Qiu Q, Xiao Y, Zeng S, Zhan M, et al.BET bromodomain suppression inhibits VEGF-induced angiogenesis and vascular permeability by blocking VEGFR2-mediated activation of PAK1 and eNOS. Sci Rep. 2016; 6:23770.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engelmann D, Mayoli-Nüssle D, Mayrhofer C, Fürst K, et al.E2F1 promotes angiogenesis through the VEGF-C/VEGFR-3 axis in a feedback loop for cooperative induction of PDGF-B. J Mol Cell Biol. 2013; 5(6):391–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song H, Suehiro J. -i., Kanki Y, Kawai Y, et al.Critical role for GATA3 in mediating Tie2 expression and function in large vessel endothelial cells. J Biol Chem. 2009; 284(42):29109–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kashyap V, Ahmad S, Nilsson EM, Helczynski L, et al.The lysine specific demethylase-1 (LSD1/KDM1A) regulates VEGF-A expression in prostate cancer. Mol Oncol. 2013; 7(3):555–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baudino TA, McKay C, Pendeville-Samain H, Nilsson JA, et al.c-Myc is essential for vasculogenesis and angiogenesis during development and tumor progression. Genes Dev. 2002; 16(19):2530–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iwatsuki K, Tanaka K, Kaneko T, Kazama R, et al.Runx1 promotes angiogenesis by downregulation of insulin-like growth factor-binding protein-3. Oncogene. 2005; 24(7):1129–37.
Article
CAS
PubMed
Google Scholar
Ghahremani FM, Goossens S, Nittner D, Bisteau X, et al.p53 promotes VEGF expression and angiogenesis in the absence of an intact p21-Rb pathway. Cell Death Differ. 2013; 20(7):888–97.
Article
CAS
Google Scholar
Karimzadeh M, Hoffman MM. Virtual ChIP-seq software for predicting transcription factor binding by learning from the transcriptome. Zenodo. 2019. https://doi.org/10.5281/zenodo.3463561.
Karimzadeh M, Hoffman MM. Datasets for predicting TF binding using Virtual ChIP-seq. Zenodo. 2018. https://doi.org/10.5281/zenodo.823297.
Karimzadeh M, Hoffman MM. Virtual ChIP-seq predictions of binding of 36 transcription factor in Roadmap Epigenomics Project tissues. Zenodo. 2018. https://doi.org/10.5281/zenodo.1455759.
Karimzadeh M, Hoffman MM. Virtual ChIP-seq predictions for TF binding in Cistrome and ENCODE-DREAM datasets. Zenodo. 2018. https://doi.org/10.5281/zenodo.1209308.