Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14.

Article
CAS
PubMed
PubMed Central
Google Scholar

Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell. 2016;165:780–91.

Article
CAS
PubMed
PubMed Central
Google Scholar

Ma A, McDermaid A, Xu J, Chang Y, Ma Q. Integrative methods and practical challenges for single-cell multi-omics. Trends Biotechnol. 2020;38(9):1007–22.

Article
CAS
PubMed
PubMed Central
Google Scholar

Teichmann S, Efremova M. Method of the year 2019: single-cell multimodal omics. Nat Methods. 2020;17(1):2020.

Google Scholar

Domcke S, Hill AJ, Daza RM, Cao J, O’Day DR, Pliner HA, et al. A human cell atlas of fetal chromatin accessibility. Science. 2020;370(6518):eaba7612.

Article
CAS
PubMed
PubMed Central
Google Scholar

Luo C, Keown CL, Kurihara L, Zhou J, He Y, Li J, et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science. 2017;357:600–4.

Article
CAS
PubMed
PubMed Central
Google Scholar

Mulqueen RM, Pokholok D, Norberg SJ, Torkenczy KA, Fields AJ, Sun D, et al. Highly scalable generation of DNA methylation profiles in single cells. Nat Biotechnol. 2018;36:428–31.

Article
CAS
PubMed
PubMed Central
Google Scholar

Cao J, Cusanovich DA, Ramani V, Aghamirzaie D, Pliner HA, Hill AJ, et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science. 2018;361:1380–5.

Article
CAS
PubMed
PubMed Central
Google Scholar

Cusanovich DA, Hill AJ, Aghamirzaie D, Daza RM, Pliner HA, Berletch JB, et al. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell. 2018;174:1309–1324.e1318.

Article
CAS
PubMed
PubMed Central
Google Scholar

Lake BB, Chen S, Sos BC, Fan J, Kaeser GE, Yung YC, et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat Biotechnol. 2018;36:70–80.

Article
CAS
PubMed
Google Scholar

Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science. 2018;362(6416):eaau5324.

Article
PubMed
PubMed Central
CAS
Google Scholar

Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science. 2018;361(6400):eaat5691.

Article
PubMed
PubMed Central
CAS
Google Scholar

Dey SS, Kester L, Spanjaard B, Bienko M, Van Oudenaarden A. Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol. 2015;33:285–9.

Article
CAS
PubMed
PubMed Central
Google Scholar

Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, et al. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods. 2015;12:519–22.

Article
CAS
PubMed
Google Scholar

Argelaguet R, Clark SJ, Mohammed H, Stapel LC, Krueger C, Kapourani C-A, et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature. 2019;576:487–91.

Article
CAS
PubMed
PubMed Central
Google Scholar

Ma S, Zhang B, LaFave LM, Earl AS, Chiang Z, Hu Y, et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell. 2020;183(4):1103–16.

Article
CAS
PubMed
PubMed Central
Google Scholar

Zhu C, Preissl S, Ren B. Single-cell multimodal omics: the power of many. Nat Methods. 2020;17:11–4.

Article
CAS
PubMed
Google Scholar

Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 2020;21:1–32.

Article
CAS
Google Scholar

Wang C, Sun D, Huang X, Wan C, Li Z, Han Y, et al. Integrative analyses of single-cell transcriptome and regulome using MAESTRO. Genome Biol. 2020;21:1–28.

Article
CAS
Google Scholar

Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM III, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–1902.e1821.

Article
CAS
PubMed
PubMed Central
Google Scholar

Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16(12):1289–96.

Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science. 2018;360:176–82.

Article
CAS
PubMed
PubMed Central
Google Scholar

Singh R, Demetci P, Bonora G, Ramani V, Lee C, Fang H, et al. Unsupervised manifold alignment for single-cell multi-omics data. In Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. 2020. p. 1–10.

Cao K, Bai X, Hong Y, Wan L. Unsupervised topological alignment for single-cell multi-omics integration. Bioinformatics. 2020;36(Supplement_1):i48–i56.

Welch JD, Hartemink AJ, Prins JF. MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics. Genome Biol. 2017;18:1–19.

Article
CAS
Google Scholar

Pliner HA, Packer JS, McFaline-Figueroa JL, Cusanovich DA, Daza RM, Aghamirzaie D, et al. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol Cell. 2018;71:858–871.e858.

Article
CAS
PubMed
PubMed Central
Google Scholar

Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.

Article
CAS
PubMed
PubMed Central
Google Scholar

Duren Z, Chen X, Zamanighomi M, Zeng W, Satpathy AT, Chang HY, et al. Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations. Proc Natl Acad Sci. 2018;115:7723–8.

Article
CAS
PubMed
PubMed Central
Google Scholar

Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, et al. Chromatin state dynamics during blood formation. Science. 2014;345:943–9.

Article
CAS
PubMed
PubMed Central
Google Scholar

Liu J, Huang Y, Singh R, Vert J-P, Noble WS. Jointly embedding multiple single-cell omics measurements. BioRxiv. 2019:644310.

Cao K, Hong Y, Wan L. Manifold alignment for heterogeneous single-cell multi-omics data integration using Pamona. Bioinformatics. 2022;38(1):211–9.

Demetci P, Santorella R, Sandstede B, Noble WS, Singh R. Gromov-Wasserstein optimal transport to align single-cell multi-omics data. BioRxiv. 2020.

Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 2017;18:1–15.

Article
CAS
Google Scholar

Liang Q, Dharmat R, Owen L, Shakoor A, Li Y, Kim S, et al. Single-nuclei RNA-seq on human retinal tissue provides improved transcriptome profiling. Nat Commun. 2019;10:1–12.

Article
CAS
Google Scholar

Masland RH. The neuronal organization of the retina. Neuron. 2012;76:266–80.

Article
CAS
PubMed
PubMed Central
Google Scholar

Menon M, Mohammadi S, Davila-Velderrain J, Goods BA, Cadwell TD, Xing Y, et al. Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat Commun. 2019;10:1–9.

Article
CAS
Google Scholar

Clark BS, Stein-O’Brien GL, Shiau F, Cannon GH, Davis-Marcisak E, Sherman T, et al. Single-cell RNA-seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification. Neuron. 2019;102:1111–1126.e1115.

Article
CAS
PubMed
PubMed Central
Google Scholar

Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell. 2016;166:1308–1323.e1330.

Article
CAS
PubMed
PubMed Central
Google Scholar

Brunet I, Weinl C, Piper M, Trembleau A, Volovitch M, Harris W, et al. The transcription factor Engrailed-2 guides retinal axons. Nature. 2005;438:94–8.

Article
CAS
PubMed
PubMed Central
Google Scholar

Nishida A, Furukawa A, Koike C, Tano Y, Aizawa S, Matsuo I, et al. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci. 2003;6:1255–63.

Article
CAS
PubMed
Google Scholar

Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P. Pax6 is required for the multipotent state of retinal progenitor cells. Cell. 2001;105:43–55.

Article
CAS
PubMed
Google Scholar

Ramanathan M, Porter DF, Khavari PA. Methods to study RNA–protein interactions. Nat Methods. 2019;16:225–34.

Article
CAS
PubMed
PubMed Central
Google Scholar

Krishnaswamy S, Spitzer MH, Mingueneau M, Bendall SC, Litvin O, Stone E, et al. Conditional density-based analysis of T cell signaling in single-cell data. Science. 2014;346(6213):1250689.

Article
PubMed
PubMed Central
CAS
Google Scholar

Efremova M, Teichmann S. Computational methods for single-cell omics across modalities. Nat Methods. 2020;17:14–7.

Article
CAS
PubMed
Google Scholar

Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017;14:865.

Article
CAS
PubMed
PubMed Central
Google Scholar

Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382:545–53.

Article
CAS
PubMed
PubMed Central
Google Scholar

Robertson MJ. Role of chemokines in the biology of natural killer cells. J Leukoc Biol. 2002;71:173–83.

Article
CAS
PubMed
Google Scholar

Garni-Wagner BA, Purohit A, Mathew PA, Bennett M, Kumar V. A novel function-associated molecule related to non-MHC-restricted cytotoxicity mediated by activated natural killer cells and T cells. J Immunol. 1993;151:60–70.

CAS
PubMed
Google Scholar

Granja JM, Corces MR, Pierce SE, Bagdatli ST, Choudhry H, Chang H, et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat Genet. 2021;53(3):403–11.

Rozenblatt-Rosen O, Stubbington MJ, Regev A, Teichmann SA. The Human Cell Atlas: from vision to reality. Nat News. 2017;550:451.

Article
CAS
Google Scholar

Consortium H. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature. 2019;574:187.

Article
CAS
Google Scholar

Rozenblatt-Rosen O, Regev A, Oberdoerffer P, Nawy T, Hupalowska A, Rood JE, et al. The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution. Cell. 2020;181:236–49.

Article
CAS
PubMed
PubMed Central
Google Scholar

Sharma A, Seow JJW, Dutertre C-A, Pai R, Blériot C, Mishra A, et al. Onco-fetal reprogramming of endothelial cells drives immunosuppressive macrophages in hepatocellular carcinoma. Cell. 2020;183:377–394.e321.

Article
CAS
PubMed
Google Scholar

Warren A, Jones A, Shibue T, Hahn WC, Boehm JS, Vazquez F, et al. Global computational alignment of tumor and cell line transcriptional profiles. Nature Commun. 2021;12(1):1–12.

Hardoon DR, Szedmak S, Shawe-Taylor J. Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 2004;16:2639–64.

Article
PubMed
Google Scholar

Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep. 2019;9:1–12.

Article
CAS
Google Scholar

Welch JD, Kozareva V, Ferreira A, Vanderburg C, Martin C, Macosko EZ. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell. 2019;177:1873–1887.e1817.

Article
CAS
PubMed
PubMed Central
Google Scholar

Siegert S, Cabuy E, Scherf BG, Kohler H, Panda S, Le Y-Z, et al. Transcriptional code and disease map for adult retinal cell types. Nat Neurosci. 2012;15:487–95.

Article
CAS
PubMed
Google Scholar

Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J, et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia. 2010;24:1160–70.

Article
CAS
PubMed
PubMed Central
Google Scholar

Liu E, Tong Y, Dotti G, Shaim H, Savoldo B, Mukherjee M, et al. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 2018;32:520–31.

Article
CAS
PubMed
Google Scholar

Chen H, Lau MC, Wong MT, Newell EW, Poidinger M, Chen J. Cytofkit: a bioconductor package for an integrated mass cytometry data analysis pipeline. PLoS Comput Biol. 2016;12:e1005112.

Article
PubMed
PubMed Central
CAS
Google Scholar

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.

Article
CAS
PubMed
PubMed Central
Google Scholar

Schep AN, Wu B, Buenrostro JD, Greenleaf WJ. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat Methods. 2017;14:975–8.

Article
CAS
PubMed
PubMed Central
Google Scholar

Dou J, Liang S, Chen K. biCCA: bi-order multimodal integration of single-cell data: Github; 2022. https://github.com/KChen-lab/bindSC.git

Dou J, Liang S, Chen K. biCCA: bi-order multimodal integration of single-cell data: Zenodo; 2022. https://doi.org/10.5281/zenodo.6448220.

Cao J, O’Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, et al. A human cell atlas of fetal gene expression. Science. 2020;370(6518):eaba7721.

Article
CAS
PubMed
PubMed Central
Google Scholar

Dou J, Liang S, Chen K, Chen R. biCCA: bi-order multimodal integration of single cell data: Gene Expression Omnibus; 2022. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE201402

Li L, Vakul M, Dou J, Huang Y, Chen K, Rezvani K: Gene expression omnibus; 2022, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE190976.

Google Scholar

Dou J, Liang S, Rezvani K, Chen K. biCCA: bi-order multimodal integration of single-cell data: FLOW Repository; 2022. http://flowrepository.org/id/FR-FCM-Z59C