Li Z, Wang M, Lin K, Xie Y, Guo J, Ye L, et al. The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements. Genome Biol. 2019;20:139.
Article
PubMed
PubMed Central
CAS
Google Scholar
International Wheat Genome Sequencing C, investigators IRp, Appels R, Eversole K, Feuillet C, Keller B, Rogers J, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361:eaar7191.
Article
CAS
Google Scholar
Weber B, Zicola J, Oka R, Stam M. Plant enhancers: a call for discovery. Trends Plant Sci. 2016;21:974–87.
Article
CAS
PubMed
Google Scholar
Sheffield NC, Furey TS. Identifying and characterizing regulatory sequences in the human genome with chromatin accessibility assays. Genes (Basel). 2012;3:651–70.
Article
CAS
Google Scholar
Spilianakis CG, Lalioti MD, Terrence T, Gap R. Interchromosomal associations between alternatively expressed loci. Nature. 2005;435:637–45.
Article
CAS
PubMed
Google Scholar
Benko S, Fantes JA, Amiel J, Kleinjan D-J, Thomas S, Ramsay J, et al. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet. 2009;41:359–64.
Article
CAS
PubMed
Google Scholar
Bulger M, Groudine M. Functional and mechanistic diversity of distal transcription enhancers. Cell. 2011;144:327–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Wong C-H, Birnbaum RY, Li G, Favaro R, Ngan CY, et al. Chromatin connectivity maps reveal dynamic promoter–enhancer long-range associations. Nature. 2013;504:306–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maniatis T, Goodbourn S, Fischer JA. Regulation of inducible and tissue-specific gene expression. Science. 1987;236:1237–45.
Article
CAS
PubMed
Google Scholar
Kim T-K, Shiekhattar R. Architectural and functional commonalities between enhancers and promoters. Cell. 2015;162:948–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai P-F, Dell'Orso S, Rodriguez J, Vivanco KO, Ko K-D, Jiang K, et al. A muscle-specific enhancer RNA mediates cohesin recruitment and regulates transcription in trans. Mol Cell. 2018;71:129–141.e128.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wright JB, Sanjana NE. CRISPR screens to discover functional noncoding elements. Trends Genet. 2016;32:526–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kvon EZ, Kazmar T, Stampfel G, Yáñez-Cuna JO, Pagani M, Schernhuber K, et al. Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature. 2014;512:91–5.
Article
CAS
PubMed
Google Scholar
Firpi HA, Ucar D, Tan K. Discover regulatory DNA elements using chromatin signatures and artificial neural network. Bioinformatics. 2010;26:1579–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu B, Zhang W, Zhang T, Liu B, Jiang J. Genome-wide prediction and validation of intergenic enhancers in Arabidopsis using open chromatin signatures. Plant Cell. 2015;27:2415–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Wu Y, Schnable JC, Zeng Z, Freeling M, Crawford GE, et al. High-resolution mapping of open chromatin in the rice genome. Genome Res. 2012;22:151–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng F, Zhao H, Zhu B, Zhang T, Yang M, Li Y, et al. Genomic editing of intronic enhancers unveils their role in fine-tuning tissue-specific gene expression in Arabidopsis thaliana. Plant Cell. 2021;33:1997–2014.
Article
PubMed
PubMed Central
Google Scholar
Oka R, Zicola J, Weber B, Anderson SN, Hodgman C, Gent JI, et al. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize. Genome Biol. 2017;18:137.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tippens ND, Liang J, Leung AK, Wierbowski SD, Ozer A, Booth JG, et al. Transcription imparts architecture, function and logic to enhancer units. Nat Genet. 2020;52:1067–75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Henriques T, Scruggs BS, Inouye MO, Muse GW, Williams LH, Burkholder AB, et al. Widespread transcriptional pausing and elongation control at enhancers. Genes Dev. 2018;32:26–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li W, Notani D, Ma Q, Tanasa B, Nunez E, Chen AY, et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature. 2013;498:516–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hah N, Murakami S, Nagari A, Danko CG, Kraus WL. Enhancer transcripts mark active estrogen receptor binding sites. Genome Res. 2013;23:1210–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu J, Liu M, Liu X, Dong Z. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis. Nat Plants. 2018;4:1112–23.
Article
CAS
PubMed
Google Scholar
Hetzel J, Duttke SH, Benner C, Chory J. Nascent RNA sequencing reveals distinct features in plant transcription. Proc Natl Acad Sci U S A. 2016;113:12316–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leng X, Ivanov M, Kindgren P, Malik I, Thieffry A, Brodersen P, et al. Organismal benefits of transcription speed control at gene boundaries. EMBO Rep. 2020;21:e49315.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
Article
CAS
Google Scholar
Core LJ, Waterfall JJ, Lis JT. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science. 2008;322:1845–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu X, Zhou X, Cao Y, Zhou M, McNeil D, Liang S, et al. RNA-seq analysis of cold and drought responsive transcriptomes of Zea mays ssp. mexicana L. Front Plant Sci. 2017;8:136.
PubMed
PubMed Central
Google Scholar
Erhard KF Jr, Talbot JE, Deans NC, McClish AE, Hollick JB. Nascent transcription affected by RNA polymerase IV in Zea mays. Genetics. 2015;199:1107–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 2009;10:R62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robertson AG, Bilenky M, Tam A, Zhao Y, Zeng T, Thiessen N, et al. Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding. Genome Res. 2008;18:1906–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet. 2007;39:311–8.
Article
CAS
PubMed
Google Scholar
Pekowska A, Benoukraf T, Zacarias-Cabeza J, Belhocine M, Koch F, Holota H, et al. H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J. 2011;30:4198–210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koch F, Fenouil R, Gut M, Cauchy P, Albert TK, Zacarias-Cabeza J, et al. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat Struct Mol Biol. 2011;18:956–63.
Article
CAS
PubMed
Google Scholar
Andersson R, Sandelin A, Danko CG. A unified architecture of transcriptional regulatory elements. Trends Genet. 2015;31:426–33.
Article
CAS
PubMed
Google Scholar
Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011;473:43–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, Lis JT. Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat Genet. 2014;46:1311–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bird KA, VanBuren R, Puzey JR, Edger PP. The causes and consequences of subgenome dominance in hybrids and recent polyploids. New Phytol. 2018;220:87–93.
Article
PubMed
Google Scholar
Powell JJ, Fitzgerald TL, Stiller J, Berkman PJ, Gardiner DM, Manners JM, et al. The defence-associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias. Plant Biotechnol J. 2017;15:533–43.
Article
CAS
PubMed
Google Scholar
Ramirez-Gonzalez RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, et al. The transcriptional landscape of polyploid wheat. Science. 2018;361:eaar6089.
Article
PubMed
CAS
Google Scholar
Gardiner LJ, Quinton-Tulloch M, Olohan L, Price J, Hall N, Hall A. A genome-wide survey of DNA methylation in hexaploid wheat. Genome Biol. 2015;16:273.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guo X, Han F. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. Plant Cell. 2014;26:4311–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohammadi M, Srivastava S, Hall JC, Kav NN, Deyholos MK. Two wheat (Triticum aestivum) pathogenesis-related 10 (PR-10) transcripts with distinct patterns of abundance in different organs. Mol Biotechnol. 2012;51:103–8.
Article
CAS
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
Article
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopylova E, Noe L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.
Article
CAS
PubMed
Google Scholar
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45:W12–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
Article
CAS
PubMed
Google Scholar
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, Li Z, Ye Z, Zhang Y, Xie Y, Ye L, et al. An atlas of wheat epigenetic regulatory elements reveals subgenome-divergence in the regulation of development and stress responses. Plant Cell. 2021;33:865–81.
Article
PubMed
PubMed Central
Google Scholar
Concia L, Veluchamy A, Ramirez-Prado JS, Martin-Ramirez A, Huang Y, Perez M, et al. Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biol. 2020;21:104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shan Q, Wang Y, Li J, Gao C. Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc. 2014;9:2395–410.
Article
CAS
PubMed
Google Scholar
Zhou Y, Zhao XB, Li YW, Xu J, Bi AY, Kang LP, et al. Triticum population sequencing provides insights into wheat adaptation. Nat Genet. 2020;52:1412–22.
Article
CAS
PubMed
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xie Y, Chen Y, Li Z, Zhu J, Liu M, Zhang Y, Dong Z, Enhancer transcription detected in nascent transcriptomic landscape of bread wheat. Gene Expression Omnibus Database.2022; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE178276.
Google Scholar
Li Z, Wang M, Lin K, Xie Y, Guo J, Ye L, Zhuang Y, Teng W, Ran X, Tong Y, et al: The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements. Gene Expression Omnibus Database.2019; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121903.
Google Scholar
Wang M, Li Z, Zhang Y, Zhang Y, Xie Y, Ye L, Zhuang Y, Lin K, Zhao F, Guo J, et al: An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. Gene Expression Omnibus Database.2021; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139019.
Google Scholar
ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the human genome. Gene Expression Omnibus Database.2016; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90257.
Google Scholar
Core LJ, Waterfall JJ, Lis JT: Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Gene Expression Omnibus Database. 2008; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13518.
Google Scholar
Lu X, Zhou X, Cao Y, Zhou M, McNeil D, Liang S, Yang C: RNA-seq analysis of cold and drought responsive transcriptomes of Zea mays ssp. mexicana L. Gene Expression Omnibus Database. 2016; https://www.ncbi. nlm.nih.gov/geo/query/acc.cgi?acc=GSE76939.
Google Scholar
Erhard KF, Jr., Talbot JE, Deans NC, McClish AE, Hollick JB: Nascent transcription affected by RNA polymerase IV in Zea mays. Gene Expression Omnibus Database. 2015; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54166.
Google Scholar
Zhu J, Liu M, Liu X, Dong Z. RNA polymerase II activity revealed by GRO-seq and pNET-seq in Arabidopsis. Gene Expression Omnibus Database. 2018; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109974.
Google Scholar
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.
Article
CAS
PubMed
PubMed Central
Google Scholar