Rundle HD, Nosil P. Ecological speciation: ecological speciation. Ecol Lett. 2005;8(3):336–52. https://doi.org/10.1111/j.1461-0248.2004.00715.x.
Article
Google Scholar
Wu C-I. The genic view of the process of speciation: genic view of the process of speciation. J Evol Biol. 2001;14(6):851–65. https://doi.org/10.1046/j.1420-9101.2001.00335.x.
Article
Google Scholar
Marques DA, Meier JI, Seehausen O. A combinatorial view on speciation and adaptive radiation. Trends Ecol Evol. 2019;34(6):531–44. https://doi.org/10.1016/j.tree.2019.02.008.
Article
PubMed
Google Scholar
Edelman NB, Frandsen PB, Miyagi M, Clavijo B, Davey J, Dikow RB, et al. Genomic architecture and introgression shape a butterfly radiation. Science. 2019;366(6465):594–9. https://doi.org/10.1126/science.aaw2090.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pease JB, Haak DC, Hahn MW, Moyle LC. Phylogenomics reveals three sources of adaptive variation during a rapid radiation. Penny D, editor. PLOS Biol. 2016;14:e1002379.
Lamichhaney S, Berglund J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A, et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature. 2015;518(7539):371–5. https://doi.org/10.1038/nature14181.
Article
CAS
PubMed
Google Scholar
Meier JI, Marques DA, Mwaiko S, Wagner CE, Excoffier L, Seehausen O. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat Commun. 2017;8(1):14363. https://doi.org/10.1038/ncomms14363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson E, Stebbins GL. Hybridization as an evolutionary stimulus. Evolution. 1954;8(4):378–88. https://doi.org/10.1111/j.1558-5646.1954.tb01504.x.
Article
Google Scholar
Mallet J. Hybridization as an invasion of the genome. Trends Ecol Evol. 2005;20(5):229–37. https://doi.org/10.1016/j.tree.2005.02.010.
Article
PubMed
Google Scholar
Todesco M, Owens GL, Bercovich N, Légaré J-S, Soudi S, Burge DO, et al. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature. 2020;584(7822):602–7. https://doi.org/10.1038/s41586-020-2467-6.
Article
CAS
PubMed
Google Scholar
Ma Y, Wang J, Hu Q, Li J, Sun Y, Zhang L, et al. Ancient introgression drives adaptation to cooler and drier mountain habitats in a cypress species complex. Commun Biol. 2019;2(1):213. https://doi.org/10.1038/s42003-019-0445-z.
Article
PubMed
PubMed Central
Google Scholar
Leroy T, Louvet J, Lalanne C, Le Provost G, Labadie K, Aury J, et al. Adaptive introgression as a driver of local adaptation to climate in European white oaks. New Phytol. 2020;226(4):1171–82. https://doi.org/10.1111/nph.16095.
Article
PubMed
Google Scholar
Nagamitsu T, Uchiyama K, Izuno A, Shimizu H, Nakanishi A. Environment-dependent introgression from Quercus dentata to a coastal ecotype of Quercus mongolica var. crispula in northern Japan. New Phytol. 2020;226(4):1018–28. https://doi.org/10.1111/nph.16131.
Article
CAS
PubMed
Google Scholar
Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J. The genomic signature of crop-wild introgression in maize. Mauricio R, editor. PLoS Genet. 2013;9:e1003477.
Flowers JM, Hazzouri KM, Gros-Balthazard M, Mo Z, Koutroumpa K, Perrakis A, et al. Cross-species hybridization and the origin of North African date palms. Proc Natl Acad Sci. 2019;116(5):1651–8. https://doi.org/10.1073/pnas.1817453116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burgarella C, Barnaud A, Kane NA, Jankowski F, Scarcelli N, Billot C, et al. Adaptive introgression: an untapped evolutionary mechanism for crop adaptation. Front Plant Sci. 2019;10:4. https://doi.org/10.3389/fpls.2019.00004.
Article
PubMed
PubMed Central
Google Scholar
Hardigan MA, Laimbeer FPE, Newton L, Crisovan E, Hamilton JP, Vaillancourt B, et al. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc Natl Acad Sci. 2017;114(46):E9999–10008. https://doi.org/10.1073/pnas.1714380114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, et al. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun. 2017;8(1):249. https://doi.org/10.1038/s41467-017-00336-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma Z-Y, Wen J, Ickert-Bond SM, Nie Z-L, Chen L-Q, Liu X-Q. Phylogenomics, biogeography, and adaptive radiation of grapes. Mol Phylogenet Evol. 2018;129:258–67. https://doi.org/10.1016/j.ympev.2018.08.021.
Article
PubMed
Google Scholar
Wan Y, Schwaninger HR, Baldo AM, Labate JA, Zhong G-Y, Simon CJ. A phylogenetic analysis of the grape genus (Vitis L.) reveals broad reticulation and concurrent diversification during neogene and quaternary climate change. BMC Evol Biol. 2013;13(1):141. https://doi.org/10.1186/1471-2148-13-141.
Article
PubMed
PubMed Central
Google Scholar
Heinitz CC, Uretsky J, Dodson Peterson JC, Huerta-Acosta KG, Walker MA. Crop wild relatives of grape (Vitis vinifera L.) throughout North America. In: Greene SL, Williams KA, Khoury CK, Kantar MB, Marek LF, editors. North Am Crop Wild Relat Vol 2. Cham: Springer International Publishing; 2019 [cited 2020 Jul 28]. p. 329–51. Available from: http://link.springer.com/10.1007/978-3-319-97121-6_10
Aradhya M, Wang Y, Walker MA, Prins BH, Koehmstedt AM, Velasco D, et al. Genetic diversity, structure, and patterns of differentiation in the genus Vitis. Plant Syst Evol. 2013;299(2):317–30. https://doi.org/10.1007/s00606-012-0723-4.
Article
CAS
Google Scholar
Ma Z-Y, Wen J, Tian J-P, Jamal A, Chen L-Q, Liu X-Q. Testing reticulate evolution of four Vitis species from East Asia using restriction-site associated DNA sequencing: Reticulate evolution of four Vitis species. J Syst Evol. 2018;56(4):331–9. https://doi.org/10.1111/jse.12444.
Article
Google Scholar
Alston JM, Sambucci O. Grapes in the World Economy. In: Cantu D, Walker MA, editors. Grape Genome. Cham: Springer International Publishing; 2019 [cited 2021 Feb 8]. p. 1–24. Available from: http://link.springer.com/10.1007/978-3-030-18601-2_1
Minio A, Lin J, Gaut BS, Cantu D. How single molecule real-time sequencing and haplotype phasing have enabled reference-grade diploid genome assembly of wine grapes. Front Plant Sci. 2017;8:826. https://doi.org/10.3389/fpls.2017.00826.
Article
PubMed
PubMed Central
Google Scholar
Walker MA, Lund K, Agüero C, Riaz S, Fort K, Heinitz C, et al. Breeding grape rootstocks for resistance to phylloxera and nematodes - it’s not always easy. Acta Hortic. 2014;(1045):89–97. https://doi.org/10.17660/ActaHortic.2014.1045.12.
Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, von Wettberg EJB, et al. Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci. 2016;21(5):418–37. https://doi.org/10.1016/j.tplants.2015.11.008.
Article
CAS
PubMed
Google Scholar
Riaz S, Pap D, Uretsky J, Laucou V, Boursiquot J-M, Kocsis L, et al. Genetic diversity and parentage analysis of grape rootstocks. Theor Appl Genet. 2019;132(6):1847–60. https://doi.org/10.1007/s00122-019-03320-5.
Article
CAS
PubMed
Google Scholar
Purcell AH, Saunders SR. Fate of Pierce’s Disease Strains of Xylella fastidiosa in Common Riparian Plants in California. Plant Dis. 1999;83(9):825–30. https://doi.org/10.1094/PDIS.1999.83.9.825.
Article
CAS
PubMed
Google Scholar
Krivanek AF, Riaz S, Walker MA. Identification and molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theor Appl Genet. 2006;112(6):1125–31. https://doi.org/10.1007/s00122-006-0214-5.
Article
CAS
PubMed
Google Scholar
Riaz S, Huerta-Acosta K, Tenscher AC, Walker MA. Genetic characterization of Vitis germplasm collected from the southwestern US and Mexico to expedite Pierce’s disease-resistance breeding. Theor Appl Genet. 2018;131(7):1589–602. https://doi.org/10.1007/s00122-018-3100-z.
Article
CAS
PubMed
Google Scholar
Massonnet M, Cochetel N, Minio A, Vondras AM, Lin J, Muyle A, et al. The genetic basis of sex determination in grapes. Nat Commun. 2020;11(1):2902. https://doi.org/10.1038/s41467-020-16700-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skotte L, Korneliussen TS, Albrechtsen A. Estimating individual admixture proportions from next generation sequencing data. Genetics. 2013;195(3):693–702. https://doi.org/10.1534/genetics.113.154138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castillo A, Dorado G, Feuillet C, Sourdille P, Hernandez P. Genetic structure and ecogeographical adaptation in wild barley (Hordeum chilense Roemer et Schultes) as revealed by microsatellite markers. BMC Plant Biol. 2010;10(1):266. https://doi.org/10.1186/1471-2229-10-266.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vigouroux Y, Glaubitz JC, Matsuoka Y, Goodman MM, Sanchez G. J, Doebley J. Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. Am J Bot. 2008;95:1240–1253, 10, DOI: https://doi.org/10.3732/ajb.0800097.
Durand EY, Patterson N, Reich D, Slatkin M. Testing for ancient admixture between closely related populations. Mol Biol Evol. 2011;28(8):2239–52. https://doi.org/10.1093/molbev/msr048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, et al. Ancient admixture in human history. Genetics. 2012;192(3):1065–93. https://doi.org/10.1534/genetics.112.145037.
Article
PubMed
PubMed Central
Google Scholar
Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the Neandertal genome. Science. 2010;328(5979):710–22. https://doi.org/10.1126/science.1188021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin SH, Davey JW, Jiggins CD. Evaluating the use of ABBA–BABA statistics to locate introgressed loci. Mol Biol Evol. 2015;32:244–57.
Article
CAS
PubMed
Google Scholar
Malinsky M, Matschiner M, Svardal H. Dsuite - Fast D -statistics and related admixture evidence from VCF files. Mol Ecol Resour. 2020:1755–0998.13265.
Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y, Ngatunga BP, et al. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science. 2015;350:1493–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Araújo MB, Peterson AT. Uses and misuses of bioclimatic envelope modeling. Ecology. 2012;93(7):1527–39. https://doi.org/10.1890/11-1930.1.
Article
PubMed
Google Scholar
Fourcade Y, Besnard AG, Secondi J. Evaluating interspecific niche overlaps in environmental and geographic spaces to assess the value of umbrella species. J Avian Biol. 2017;48(12):1563–74. https://doi.org/10.1111/jav.01153.
Article
Google Scholar
Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, et al. Ecological Niches and Geographic Distributions (MPB-49). Princeton University Press; 2011. Available from: https://books.google.com/books?id=wyFnf9x9Vi0C
Morales-Cruz A, Aguirre-Liguori J, Zhou Y, Minio A, Riaz S, Walker AM, Cantu D, Gaut BS. Introgression among North American wild grapes (Vitis) fuels biotic and abiotic adaptation. Figshare. https://doi.org/10.6084/m9.figshare.13912178 (2021).
Martin SH, Van Belleghem SM. Exploring evolutionary relationships across the genome using topology weighting. Genetics. 2017;206(1):429–38. https://doi.org/10.1534/genetics.116.194720.
Article
PubMed
PubMed Central
Google Scholar
Schumer M, Xu C, Powell DL, Durvasula A, Skov L, Holland C, et al. Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science. 2018;360(6389):656–60. https://doi.org/10.1126/science.aar3684.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou C, Karn A, Reisch B, Nguyen A, Sun Y, Bao Y, et al. Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus. Nat Commun. 2020;11(1):413. https://doi.org/10.1038/s41467-019-14280-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osuna-Cruz CM, Paytuvi-Gallart A, Di Donato A, Sundesha V, Andolfo G, Aiese Cigliano R, et al. PRGdb 3.0: a comprehensive platform for prediction and analysis of plant disease resistance genes. Nucleic Acids Res. 2018;46(D1):D1197–201. https://doi.org/10.1093/nar/gkx1119.
Article
CAS
PubMed
Google Scholar
Caye K, Jumentier B, Lepeule J, François O. LFMM 2: fast and accurate inference of gene-environment associations in genome-wide studies. Kelley J, editor. Mol Biol Evol. 2019;36:852–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo L, Tang Z, Schoville SD, Zhu J. A comprehensive analysis comparing linear and generalized linear models in detecting adaptive SNPs. Mol Ecol Resour. 2021;21(3):733–44. https://doi.org/10.1111/1755-0998.13298.
Article
CAS
PubMed
Google Scholar
Gautier M. Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics. 2015;201(4):1555–79. https://doi.org/10.1534/genetics.115.181453.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeffreys H. Theory of probability. 3rd ed. Oxford [Oxfordshire]: New York: Clarendon Press ; Oxford University Press; 1998.
Payseur BA, Rieseberg LH. A genomic perspective on hybridization and speciation. Mol Ecol. 2016;25(11):2337–60. https://doi.org/10.1111/mec.13557.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suarez-Gonzalez A, Lexer C, Cronk QCB. Adaptive introgression: a plant perspective. Biol Lett. 2018;14(3):20170688. https://doi.org/10.1098/rsbl.2017.0688.
Article
PubMed
PubMed Central
Google Scholar
Janzen GM, Wang L, Hufford MB. The extent of adaptive wild introgression in crops. New Phytol. 2019;221(3):1279–88. https://doi.org/10.1111/nph.15457.
Article
PubMed
Google Scholar
Girollet N, Rubio B, Lopez-Roques C, Valière S, Ollat N, Bert P-F. De novo phased assembly of the Vitis riparia grape genome. Sci Data. 2019;6(1):127. https://doi.org/10.1038/s41597-019-0133-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patel S, Robben M, Fennell A, Londo JP, Alahakoon D, Villegas-Diaz R, et al. Draft genome of the Native American cold hardy grapevine Vitis riparia Michx. ‘Manitoba 37.’ Hortic Res. 2020;7:92.
Yang Y, Cuenca J, Wang N, Liang Z, Sun H, Gutierrez B, Xi X, Arro J, Wang Y, Fan P, Londo J, Cousins P, Li S, Fei Z, Zhong GY A key ‘foxy’ aroma gene is regulated by homology-induced promoter indels in the iconic juice grape ‘Concord.’ Hortic Res. 2020;7:67, A key ‘foxy’ aroma gene is regulated by homology-induced promoter indels in the iconic juice grape ‘Concord’, 1, DOI: https://doi.org/10.1038/s41438-020-0304-6.
Wang Y, Xin H, Fan P, Zhang J, Liu Y, Dong Y, et al. The genome of Shanputao (Vitis amurensis) provides a new insight into cold tolerance of grapevine. Plant J. 2021;105(6):1495–506. https://doi.org/10.1111/tpj.15127.
Article
CAS
PubMed
Google Scholar
Lachance J, Tishkoff SA. SNP ascertainment bias in population genetic analyses: Why it is important, and how to correct it: Prospects & Overviews. BioEssays. 2013;35(9):780–6. https://doi.org/10.1002/bies.201300014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Günther T, Nettelblad C. The presence and impact of reference bias on population genomic studies of prehistoric human populations. Di Rienzo A, editor. PLOS Genet. 2019;15:e1008302.
Gopalakrishnan S, Samaniego Castruita JA, Sinding M-HS, Kuderna LFK, Räikkönen J, Petersen B, et al. The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics. BMC Genomics. 2017;18:495.
Article
PubMed
PubMed Central
Google Scholar
Brandt DYC, Aguiar VRC, Bitarello BD, Nunes K, Goudet J, Meyer D. Mapping bias overestimates reference allele frequencies at the HLA genes in the 1000 Genomes Project Phase I Data. G3 GenesGenomesGenetics. 2015;5:931–41.
Chen N-C, Solomon B, Mun T, Iyer S, Langmead B. Reference flow: reducing reference bias using multiple population genomes. Genome Biol. 2021;22(1):8. https://doi.org/10.1186/s13059-020-02229-3.
Article
PubMed
PubMed Central
Google Scholar
Schneeberger K, Hagmann J, Ossowski S, Warthmann N, Gesing S, Kohlbacher O, et al. Simultaneous alignment of short reads against multiple genomes. Genome Biol. 2009;10(9):R98. https://doi.org/10.1186/gb-2009-10-9-r98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller AJ, Matasci N, Schwaninger H, Aradhya MK, Prins B, Zhong G-Y, et al. Vitis phylogenomics: hybridization intensities from a SNP array outperform genotype calls. Wang T, editor. PLoS ONE. 2013;8:e78680.
Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 2014;505(7481):43–9. https://doi.org/10.1038/nature12886.
Article
CAS
PubMed
Google Scholar
Gonzalez-Segovia E, Pérez-Limon S, Cíntora-Martínez GC, Guerrero-Zavala A, Janzen GM. Hufford MB, et al. Characterization of introgression from the teosinte Zea mays ssp. mexicana to Mexican highland maize. PeerJ. 2019;7:e6815.
Barton NH, Hewitt GM. Analysis of Hybrid Zones. Annu Rev Ecol Syst. Annual Reviews. 1985;16(1):113–48. https://doi.org/10.1146/annurev.es.16.110185.000553.
Article
Google Scholar
Zhang X, Kim B, Lohmueller KE, Huerta-Sánchez E. The impact of recessive deleterious variation on signals of adaptive introgression in human populations. Genetics. 2020;215(3):799–812. https://doi.org/10.1534/genetics.120.303081.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laine A-L, Burdon JJ, Dodds PN, Thrall PH. Spatial variation in disease resistance: from molecules to metapopulations: Spatial variation in disease resistance. J Ecol. 2011;99(1):96–112. https://doi.org/10.1111/j.1365-2745.2010.01738.x.
Article
PubMed
PubMed Central
Google Scholar
Marden JH, Mangan SA, Peterson MP, Wafula E, Fescemyer HW, Der JP, et al. Ecological genomics of tropical trees: how local population size and allelic diversity of resistance genes relate to immune responses, cosusceptibility to pathogens, and negative density dependence. Mol Ecol. 2017;26(9):2498–513. https://doi.org/10.1111/mec.13999.
Article
CAS
PubMed
Google Scholar
Stump SM, Marden JH, Beckman NG, Mangan SA, Comita LS. Resistance genes affect how pathogens maintain plant abundance and diversity. Am Nat. 2020;196(4):472–86. https://doi.org/10.1086/710486.
Article
PubMed
Google Scholar
Bever JD, Mangan SA, Alexander HM. Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst. 2015;46(1):305–25. https://doi.org/10.1146/annurev-ecolsys-112414-054306.
Article
Google Scholar
Burdon JJ, Thrall PH. Ericson and L. The current and future dynamics of disease in plant communities. Annu Rev Phytopathol. 2006;44:19–39.
Article
CAS
PubMed
Google Scholar
Suarez-Gonzalez A, Hefer CA, Lexer C, Cronk QCB, Douglas CJ. Scale and direction of adaptive introgression between black cottonwood (Populus trichocarpa) and balsam poplar (P. balsamifera). Mol Ecol. 2018;27(7):1667–80. https://doi.org/10.1111/mec.14561.
Article
CAS
PubMed
Google Scholar
Pierquet P, Stushnoff C. Relationship of low temperature exotherms to cold injury in Vitis Riparia Michx. Am J Enol Vitic. 1980;31:1–6.
Google Scholar
Kovaleski AP, Reisch BI, Londo JP. Deacclimation kinetics as a quantitative phenotype for delineating the dormancy transition and thermal efficiency for budbreak in Vitis species. AoB PLANTS. 2018 [cited 2021 Jan 21]; Available from: https://academic.oup.com/aobpla/advance-article/doi/10.1093/aobpla/ply066/5127118
Londo JP, Kovaleski AP. Deconstructing cold hardiness: variation in supercooling ability and chilling requirements in the wild grapevine Vitis riparia. Aust J Grape Wine Res. 2019;25(3):276–85. https://doi.org/10.1111/ajgw.12389.
Article
Google Scholar
Enard D, Petrov DA. Evidence that RNA viruses drove adaptive introgression between Neanderthals and modern humans. Cell. 2018;175:360-371.e13.
Minio A, Massonnet M, Figueroa-Balderas R, Castro A, Cantu D. Diploid genome assembly of the wine grape Carménère. G3amp58 GenesGenomesGenetics. 2019;9:1331–7.
Myers G. Efficient local alignment discovery amongst noisy long reads. In: Brown D, Morgenstern B, editors. Algorithms Bioinforma. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014 [cited 2020 Nov 2]. p. 52–67. Available from: http://link.springer.com/10.1007/978-3-662-44753-6_5
Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 2016;13(12):1050–4. https://doi.org/10.1038/nmeth.4035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinformatics. 2014;15:211.
Article
PubMed
PubMed Central
Google Scholar
English AC, Richards S, Han Y, Wang M, Vee V, Qu J, et al. Mind the gap: upgrading genomes with pacific biosciences RS long-read sequencing technology. Liu Z, editor. PLoS ONE. 2012;7:e47768.
English AC, Salerno WJ, Reid JG. PBHoney: identifying genomic variants via long-read discordance and interrupted mapping. BMC Bioinformatics. 2014;15(1):180. https://doi.org/10.1186/1471-2105-15-180.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lam ET, Hastie A, Lin C, Ehrlich D, Das SK, Austin MD, et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol. 2012;30(8):771–6. https://doi.org/10.1038/nbt.2303.
Article
CAS
PubMed
Google Scholar
Blanco-Ulate B, Vincenti E, Powell ALT, Cantu D. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Front Plant Sci. 2013 [cited 2020 Nov 2];4. Available from: http://journal.frontiersin.org/article/10.3389/fpls.2013.00142/abstract
Vondras AM, Minio A, Blanco-Ulate B, Figueroa-Balderas R, Penn MA, Zhou Y, et al. The genomic diversification of grapevine clones. BMC Genomics. 2019;20:972.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31(19):5654–66. https://doi.org/10.1093/nar/gkg770.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34(Web Server):W435–9. https://doi.org/10.1093/nar/gkl200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lomsadze A. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005;33:6494–506.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5:59.
Article
PubMed
PubMed Central
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2. https://doi.org/10.1093/bioinformatics/btv351.
Article
CAS
PubMed
Google Scholar
Smit, AFA, Hubley, R, Green, P. RepeatMasker Open-4.0. 2015. Available from: http://www.repeatmasker.org
Minio A, Massonnet M, Figueroa-Balderas R, Vondras AM, Blanco-Ulate B, Cantu D. Iso-Seq allows genome-independent transcriptome profiling of grape berry development. G3amp58 GenesGenomesGenetics. 2019;g3.201008.2018.
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5. https://doi.org/10.1038/nbt.3122.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52. https://doi.org/10.1038/nbt.1883.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boratyn GM, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden TL. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics. 2019;20(1):405. https://doi.org/10.1186/s12859-019-2996-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slater G, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6(1):31. https://doi.org/10.1186/1471-2105-6-31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 2008;9(1):R7. https://doi.org/10.1186/gb-2008-9-1-r7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6. https://doi.org/10.1093/bioinformatics/bti610.
Article
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.
Article
CAS
PubMed
Google Scholar
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40. https://doi.org/10.1093/bioinformatics/btu031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castillo-Davis CI, Hartl DL. GeneMerge--post-genomic analysis, data mining, and hypothesis testing. Bioinformatics. 2003;19:891–2.
Article
CAS
PubMed
Google Scholar
Zhou Y, Massonnet M, Sanjak JS, Cantu D, Gaut BS. Evolutionary genomics of grape ( Vitis vinifera ssp. vinifera ) domestication. Proc Natl Acad Sci. 2017;114:11715–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio. 2013 [cited 2020 Nov 2]; Available from: http://arxiv.org/abs/1303.3997
Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics. 2014;30(20):2843–51. https://doi.org/10.1093/bioinformatics/btu356.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak : a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour. 2015;15:1179–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee T-H, Guo H, Wang X, Kim C, Paterson AH. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics. 2014;15(1):162. https://doi.org/10.1186/1471-2164-15-162.
Article
PubMed
PubMed Central
Google Scholar
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74. https://doi.org/10.1093/molbev/msu300.
Article
CAS
PubMed
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9. https://doi.org/10.1038/nmeth.4285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Schwartz R, editor. Bioinformatics. 2019;35:526–8.
Schliep K, Potts AJ, Morrison DA, Grimm GW. Intertwining phylogenetic trees and networks. Fitzjohn R, editor. Methods Ecol Evol. 2017;8(10):1212–20. https://doi.org/10.1111/2041-210X.12760.
Article
Google Scholar
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. Pertea M, editor. PLOS Comput Biol. 2019;15:e1006650.
Bouckaert RR. DensiTree: making sense of sets of phylogenetic trees. Bioinformatics. 2010;26:1372–3.
Article
CAS
PubMed
Google Scholar
Alachiotis N, Pavlidis P. RAiSD detects positive selection based on multiple signatures of a selective sweep and SNP vectors. Commun Biol. 2018;1(1):79. https://doi.org/10.1038/s42003-018-0085-8.
Article
PubMed
PubMed Central
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. https://doi.org/10.1093/bioinformatics/btq033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krivanek AF, Walker MA. Vitis resistance to Pierce’s disease is characterized by differential Xylella fastidiosa populations in stems and leaves. Phytopathology®. 2005;95:44–52.
Riaz S, Tenscher AC, Heinitz CC, Huerta-Acosta KG, Walker MA. Genetic analysis reveals an east-west divide within North American Vitis species that mirrors their resistance to Pierce’s disease. Chiang T-Y, editor. PLOS ONE. 2020;15:e0243445.
Frichot E, Schoville SD, Bouchard G, François O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30(7):1687–99. https://doi.org/10.1093/molbev/mst063.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cubry P, Pidon H, Ta KN, Tranchant-Dubreuil C, Thuillet A-C, Holzinger M, et al. Genome wide association study pinpoints key agronomic QTLs in African Rice Oryza glaberrima. Rice. 2020;13(1):66. https://doi.org/10.1186/s12284-020-00424-1.
Article
PubMed
PubMed Central
Google Scholar
Rhoné B, Defrance D, Berthouly-Salazar C, Mariac C, Cubry P, Couderc M, et al. Pearl millet genomic vulnerability to climate change in West Africa highlights the need for regional collaboration. Nat Commun. 2020;11:5274.
Article
PubMed
PubMed Central
Google Scholar
Tiffin P, Ross-Ibarra J. Advances and limits of using population genetics to understand local adaptation. Trends Ecol Evol. 2014;29(12):673–80. https://doi.org/10.1016/j.tree.2014.10.004.
Article
PubMed
Google Scholar
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25(15):1965–78. https://doi.org/10.1002/joc.1276.
Article
Google Scholar
Hijmans R, van Etten J. Raster: Geographic data analysis and modeling. 2020. Available from: https://cran.r-project.org/web/packages/raster
Google Scholar
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190(3-4):231–59. https://doi.org/10.1016/j.ecolmodel.2005.03.026.
Article
Google Scholar
Morales-Cruz A, Aguirre-Liguori J, Zhou Y, Minio A, Riaz S, Walker AM, Cantu D, Gaut BS. Introgression among North American wild grapes (Vitis) fuels biotic and abiotic adaptation. Whole genome resequencing data for all 130 accessions. NCBI BioProject. https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA731597 (2021)
Morales-Cruz A, Aguirre-Liguori J, Zhou Y, Minio A, Riaz S, Walker AM, Cantu D, Gaut BS. Introgression among North American wild grapes (Vitis) fuels biotic and abiotic adaptation. Transcriptomic data used for gene annotation. NCBI BioProject. https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA705722 (2021)
Morales-Cruz A, Aguirre-Liguori J, Zhou Y, Minio A, Riaz S, Walker AM, Cantu D, Gaut BS. Introgression among North American wild grapes (Vitis) fuels biotic and abiotic adaptation. Zenodo. https://doi.org/10.5281/zenodo.4977234 (2021)
Minio A, Cantu D. FALCON Unzip based pipeline integrating DAmasker and boosting Unzip speed. Github. https://github.com/andreaminio/FalconUnzip-DClab (2021).