Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904. https://doi.org/10.1152/physrev.00045.2009.
Article
CAS
PubMed
Google Scholar
Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2015;14(1):20–32. https://doi.org/10.1038/nrmicro3552.
Article
CAS
PubMed
PubMed Central
Google Scholar
The Human Microbiome Project C, Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207.
Article
Google Scholar
Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat Biotechnol. 2020;39:105–114.
Nemergut DR, Schmidt SK, Fukami T, O'Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77(3):342–56. https://doi.org/10.1128/MMBR.00051-12.
Article
PubMed
PubMed Central
Google Scholar
Shade A, Peter H, Allison SD, Baho DL, Berga M, Burgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417.
Article
Google Scholar
Browne HP, Neville BA, Forster SC, Lawley TD. Transmission of the gut microbiota: spreading of health. Nat Rev Microbiol. 2017;15(9):531–43. https://doi.org/10.1038/nrmicro.2017.50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Falkow S. Who speaks for the microbes? Emerg Infect Dis. 1998;4(3):495–7. https://doi.org/10.3201/eid0403.980342.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Micro. 2016;14(1):20–32. https://doi.org/10.1038/nrmicro3552.
Article
CAS
Google Scholar
Nayfach S, Rodriguez-Mueller B, Garud N, Pollard KS. An integrated metagenomics pipeline for strain profiling reveals novel patterns of bacterial transmission and biogeography. Genome Res. 2016;26(11):1612–25. https://doi.org/10.1101/gr.201863.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaffer M, Lozupone C. Prevalence and source of fecal and oral bacteria on infant, child, and adult hands. mSystems. 2018;3(1):e00192-17.
Article
Google Scholar
Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science. 2014;345(6200):1048–52. https://doi.org/10.1126/science.1254529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faith JJ, Colombel JF, Gordon JI. Identifying strains that contribute to complex diseases through the study of microbial inheritance. Proc Natl Acad Sci USA. 2015;112(3):633–40. https://doi.org/10.1073/pnas.1418781112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210–5. https://doi.org/10.1038/nature25973.
Article
CAS
PubMed
Google Scholar
Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. eLife. 2013;2:e00458. https://doi.org/10.7554/eLife.00458.
Article
PubMed
PubMed Central
Google Scholar
Brito IL, Gurry T, Zhao S, Huang K, Young SK, Shea TP, et al. Transmission of human-associated microbiota along family and social networks. Nat Microbiol. 2019;4(6):964–71. https://doi.org/10.1038/s41564-019-0409-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martinez I, Stegen JC, Maldonado-Gomez MX, Eren AM, Siba PM, Greenhill AR, et al. The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes. Cell Rep. 2015;11(4):527–38. https://doi.org/10.1016/j.celrep.2015.03.049.
Article
CAS
PubMed
Google Scholar
Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cospeciation of gut microbiota with hominids. Science. 2016;353(6297):380–2. https://doi.org/10.1126/science.aaf3951.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shao Y, Forster SC, Tsaliki E, Vervier K, Strang A, Simpson N, et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature. 2019;574(7776):117–21. https://doi.org/10.1038/s41586-019-1560-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarkar A, Harty S, Johnson KVA, Moeller AH, Archie EA, Schell LD, et al. Microbial transmission in animal social networks and the social microbiome. Nat Ecol Evol. 2020;4(8):1020–35. https://doi.org/10.1038/s41559-020-1220-8.
Article
PubMed
Google Scholar
Galperin MY. Genome diversity of spore-forming firmicutes. Microbiol Spectrum. 2013;1(2):TBS-0015-2012.
Article
Google Scholar
Errington J. Regulation of endospore formation in Bacillus subtilis. Nat Rev Microbiol. 2003;1(2):117–26. https://doi.org/10.1038/nrmicro750.
Article
CAS
PubMed
Google Scholar
Paredes-Sabja D, Shen A, Sorg JA. Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol. 2014;22(7):406–16. https://doi.org/10.1016/j.tim.2014.04.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sorg JA, Sonenshein AL. Bile salts and glycine as cogerminants for <em>Clostridium difficile</em> Spores. J Bacteriol. 2008;190(7):2505–12. https://doi.org/10.1128/JB.01765-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533(7604):543–6. https://doi.org/10.1038/nature17645.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kearney SM, Gibbons SM, Poyet M, Gurry T, Bullock K, Allegretti JR, et al. Endospores and other lysis-resistant bacteria comprise a widely shared core community within the human microbiota. ISME J. 2018;12(10):2403–16. https://doi.org/10.1038/s41396-018-0192-z.
Article
PubMed
PubMed Central
Google Scholar
Poyet M, Groussin M, Gibbons SM, Avila-Pacheco J, Jiang X, Kearney SM, et al. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat Med. 2019;25(9):1442–52. https://doi.org/10.1038/s41591-019-0559-3.
Article
CAS
PubMed
Google Scholar
Tanaka M, Onizuka S, Mishima R, Nakayama J. Cultural isolation of spore-forming bacteria in human feces using bile acids. Sci Rep. 2020;10(1):15041. https://doi.org/10.1038/s41598-020-71883-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Egan M, Dempsey E, Ryan CA, Ross RP, Stanton C. The sporobiota of the human gut. Gut Microbes. 2021;13(1):1–17. https://doi.org/10.1080/19490976.2020.1863134.
Article
CAS
PubMed
Google Scholar
Pettit LJ, Browne HP, Yu L, Smits WK, Fagan RP, Barquist L, et al. Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism. BMC Genomics. 2014;15(1):160. https://doi.org/10.1186/1471-2164-15-160.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koenigsknecht MJ, Theriot CM, Bergin IL, Schumacher CA, Schloss PD, Young VB. Dynamics and Establishment of <span class=“named-content genus-species” id=“named-content-1”>Clostridium difficile</span> Infection in the Murine Gastrointestinal Tract. Infect Immun. 2015;83(3):934–41. https://doi.org/10.1128/IAI.02768-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maughan H, Birky CW Jr, Nicholson WL. Transcriptome divergence and the loss of plasticity in Bacillus subtilis after 6,000 generations of evolution under relaxed selection for sporulation. J Bacteriol. 2009;191(1):428–33. https://doi.org/10.1128/JB.01234-08.
Article
CAS
PubMed
Google Scholar
Maughan H, Masel J, Birky CW, Nicholson WL. The roles of mutation accumulation and selection in loss of sporulation in experimental populations of <em>Bacillus subtilis</em>. Genetics. 2007;177(2):937–48. https://doi.org/10.1534/genetics.107.075663.
Article
PubMed
PubMed Central
Google Scholar
Martins D, Mendes AL, Antunes J, Henriques AO, Serrano M. A regulatory protein that represses sporulation in <em>Clostridioides difficile</em>. bioRxiv. 2020:2020.02.25.964569.
Abecasis AB, Serrano M, Alves R, Quintais L, Pereira-Leal JB, Henriques AO. A genomic signature and the identification of new sporulation genes. J Bacteriol. 2013;195(9):2101–15. https://doi.org/10.1128/JB.02110-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramos-Silva P, Serrano M, Henriques AO. From root to tips: sporulation evolution and specialization in Bacillus subtilis and the intestinal pathogen Clostridioides difficile. Mol Biol Evol. 2019;36(12):2714–36. https://doi.org/10.1093/molbev/msz175.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duncan SH, Hold GL, Harmsen HJ, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol. 2002;52(Pt 6):2141–6. https://doi.org/10.1099/00207713-52-6-2141.
Article
CAS
PubMed
Google Scholar
Rainey FA, Zhilina TN, Boulygina ES, Stackebrandt E, Tourova TP, Zavarzin GA. The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov. and further taxonomic rearrangements at the genus and species level. Anaerobe. 1995;1(4):185–99. https://doi.org/10.1006/anae.1995.1018.
Article
CAS
PubMed
Google Scholar
Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol. 2014;6(3):703–13. https://doi.org/10.1093/gbe/evu050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mira A, Ochman H, Moran NA. Deletional bias and the evolution of bacterial genomes. Trends Genet. 2001;17(10):589–96. https://doi.org/10.1016/S0168-9525(01)02447-7.
Article
CAS
PubMed
Google Scholar
Batut B, Knibbe C, Marais G, Daubin V. Reductive genome evolution at both ends of the bacterial population size spectrum. Nat Rev Micro. 2014;12(12):841–50. https://doi.org/10.1038/nrmicro3331.
Article
CAS
Google Scholar
Langridge GC, Fookes M, Connor TR, Feltwell T, Feasey N, Parsons BN, et al. Patterns of genome evolution that have accompanied host adaptation in <em>Salmonella</em>. Proc Natl Acad Sci. 2015;112(3):863–8. https://doi.org/10.1073/pnas.1416707112.
Article
CAS
PubMed
Google Scholar
Martínez-Cano DJ, Reyes-Prieto M, Martínez-Romero E, Partida-Martínez LP, Latorre A, Moya A, et al. Evolution of small prokaryotic genomes. Front Microbiol. 2015;5(742):742.
Nayfach S, Shi ZJ, Seshadri R, Pollard KS, Kyrpides NC. New insights from uncultivated genomes of the global human gut microbiome. Nature. 2019;568(7753):505–10. https://doi.org/10.1038/s41586-019-1058-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M, et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. Plos Genet. 2011;7(2):e1001314. https://doi.org/10.1371/journal.pgen.1001314.
Article
CAS
PubMed
PubMed Central
Google Scholar
Degnan Patrick H, Taga Michiko E, Goodman AL. Vitamin B<sub>12</sub> as a modulator of gut microbial ecology. Cell Metab. 2014;20(5):769–78. https://doi.org/10.1016/j.cmet.2014.10.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shelton AN, Seth EC, Mok KC, Han AW, Jackson SN, Haft DR, et al. Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME J. 2019;13(3):789–804. https://doi.org/10.1038/s41396-018-0304-9.
Article
CAS
PubMed
Google Scholar
Sharma V, Rodionov DA, Leyn SA, Tran D, Iablokov SN, Ding H, et al. B-Vitamin sharing promotes stability of gut microbial communities. Front Microbiol. 2019;10:1485.
Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe. 2009;6(3):279–89. https://doi.org/10.1016/j.chom.2009.08.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaakoush NO. Insights into the role of Erysipelotrichaceae in the human host. Front Cell Infect Microbiol. 2015;5:84.
Article
Google Scholar
Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E, Stares MD, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol. 2019;37(2):186–92. https://doi.org/10.1038/s41587-018-0009-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daniel R, Bobik TA, Gottschalk G. Biochemistry of coenzyme B12-dependent glycerol and diol dehydratases and organization of the encoding genes. FEMS Microbiol Rev. 1998;22(5):553–66. https://doi.org/10.1111/j.1574-6976.1998.tb00387.x.
Article
CAS
PubMed
Google Scholar
Tung J, Barreiro LB, Burns MB, Grenier JC, Lynch J, Grieneisen LE, et al. Social networks predict gut microbiome composition in wild baboons. eLife. 2015;4. https://doi.org/10.7554/eLife.05224.
Lawley TD, Bouley DM, Hoy YE, Gerke C, Relman DA, Monack DM. Host transmission of <em>Salmonella enterica</em> serovar typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect Immun. 2008;76(1):403–16. https://doi.org/10.1128/IAI.01189-07.
Article
CAS
PubMed
Google Scholar
Robinson CD, Bohannan BJM, Britton RA. Scales of persistence: transmission and the microbiome. Curr Opin Microbiol. 2019;50:42–9. https://doi.org/10.1016/j.mib.2019.09.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Obeng N, Bansept F, Sieber M, Traulsen A, Schulenburg H. Evolution of microbiota–host associations: the microbe’s perspective. Trends Microbiol. 2021. https://doi.org/10.1016/j.tim.2021.02.005.
Avershina E, Larsen MG, Aspholm M, Lindback T, Storrø O, Øien T, et al. Culture dependent and independent analyses suggest a low level of sharing of endospore-forming species between mothers and their children. Sci Rep. 2020;10(1):1832. https://doi.org/10.1038/s41598-020-58858-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529(7585):212–5. https://doi.org/10.1038/nature16504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. Toward automatic reconstruction of a highly resolved tree of life. Science. 2006;311(5765):1283–7. https://doi.org/10.1126/science.1123061.
Article
CAS
PubMed
Google Scholar
O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–D45. https://doi.org/10.1093/nar/gkv1189.
Article
CAS
PubMed
Google Scholar
Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA, Kultima JR, et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat Meth. 2013;10(12):1196–9. https://doi.org/10.1038/nmeth.2693.
Article
CAS
Google Scholar
Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J, Harris SR, et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microbial Genomics. 2016;2(8).
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25(7):1043–55. https://doi.org/10.1101/gr.186072.114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36(10):996–1004. https://doi.org/10.1038/nbt.4229.
Article
CAS
PubMed
Google Scholar
Katoh K, Misawa K, Ki K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66. https://doi.org/10.1093/nar/gkf436.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540–52. https://doi.org/10.1093/oxfordjournals.molbev.a026334.
Article
CAS
PubMed
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. Plos One. 2010;5(3):e9490. https://doi.org/10.1371/journal.pone.0009490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendler K, Chen H, Parks DH, Lobb B, Hug LA, Doxey AC. AnnoTree: visualization and exploration of a functionally annotated microbial tree of life. Nucleic Acids Res. 2019;47(9):4442–8. https://doi.org/10.1093/nar/gkz246.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letunic I, Bork P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 2011;39(Web Server issue):W475–8.
Article
CAS
Google Scholar
Lawley TD, Croucher NJ, Yu L, Clare S, Sebaihia M, Goulding D, et al. Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores. J Bacteriol. 2009;191(17):5377–86. https://doi.org/10.1128/JB.00597-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015;43(D1):D222–D6. https://doi.org/10.1093/nar/gku1221.
Article
CAS
PubMed
Google Scholar
Riley M. Functions of the gene products of Escherichia coli. Microbiol Rev. 1993;57(4):862–952. https://doi.org/10.1128/mr.57.4.862-952.1993.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2008;37(suppl_1):D233–D8.
PubMed
PubMed Central
Google Scholar
Rocchi. Lo stato attuale delle nostre cognizioni sui germi anaerobi. BullSciMed. 1908;8:457-528.
Eggerth AH. The Gram-positive non-spore-bearing anaerobic bacilli of human feces. J Bacteriol. 1935;30(3):277–99. https://doi.org/10.1128/jb.30.3.277-299.1935.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaneuchi C, Miyazato T, Shinjo T, Mitsuoka T. Taxonomic study of helically coiled, sporeforming anaerobes isolated from the intestines of humans and other animals: Clostridium cocleatum sp. nov. and Clostridium spiroforme sp. nov. Int J Syst Evol Microbiol. 1979;29(1):1–12.
Google Scholar
Borriello SP, Davies HA, Carman RJ. Cellular morphology of Clostridium spiroforme. Vet Microbiol. 1986;11(1):191–5. https://doi.org/10.1016/0378-1135(86)90020-9.
Article
CAS
PubMed
Google Scholar
Holdeman LV, Cato EP, Moore WEC. Clostridium ramosum (Vuillemin) comb. nov.: emended description and proposed neotype strain. Int J Syst Evol Microbiol. 1971;21(1):35–9.
Google Scholar
Vervier K, Browne HP, Lawley TD. CarboLogR: a Shiny/R application for statistical analysis of bacterial utilisation of carbon sources. bioRxiv. 2019:695676.
Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 2015;43(14):6761–71. https://doi.org/10.1093/nar/gkv657.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9(1):5114. https://doi.org/10.1038/s41467-018-07641-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11(12):2864–8. https://doi.org/10.1038/ismej.2017.126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17(1):132. https://doi.org/10.1186/s13059-016-0997-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568(7753):499–504. https://doi.org/10.1038/s41586-019-0965-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Browne H. Longicatena caecimuris strain NCIMB 15236. Available from: https://store.ncimb.com/page/Strains_table1.
Browne H. Erysipelatoclostridium ramosum strain NCIMB 15237. Available from: https://store.ncimb.com/page/Strains_table1.