Van de Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat Rev Genet. 2017;18(7):411–24. https://doi.org/10.1038/nrg.2017.26.
Article
CAS
PubMed
Google Scholar
Ohno S. Evolution by gene duplication. Berlin, Heidelberg: Springer Berlin Heidelberg; 1970. https://doi.org/10.1007/978-3-642-86659-3.
Book
Google Scholar
Merico A, Sulo P, Piskur J, Compagno C. Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J. 2007;274(4):976–89. https://doi.org/10.1111/j.1742-4658.2007.05645.x.
Article
CAS
PubMed
Google Scholar
Soltis PS, Soltis DE. Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol. 2016;30:159–65. https://doi.org/10.1016/j.pbi.2016.03.015.
Article
PubMed
Google Scholar
Lohaus R, Van de Peer Y. Of dups and dinos: evolution at the K/Pg boundary. Curr Opin Plant Biol. 2016;30:62–9. https://doi.org/10.1016/j.pbi.2016.01.006.
Article
CAS
PubMed
Google Scholar
Holland PW, Garcia-Fernàndez J, Williams NA, Sidow A. Gene duplications and the origins of vertebrate development. Development. 1994;Supplement:125–33.
Meyer A, Van De Peer Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays. 2005;27(9):937–45. https://doi.org/10.1002/bies.20293.
Article
CAS
PubMed
Google Scholar
Volff JN. Genome evolution and biodiversity in teleost fish. Heredity. 2005;94(3):280–94. https://doi.org/10.1038/sj.hdy.6800635.
Article
CAS
PubMed
Google Scholar
Soltis DE, Segovia-Salcedo MC, Jordon-Thaden I, Majure L, Miles NM, Mavrodiev EV, Mei W, Cortez MB, Soltis PS, Gitzendanner MA. Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayroseet al. (2011). New Phytol. 2014;202(4):1105–17. https://doi.org/10.1111/nph.12756.
Article
PubMed
Google Scholar
Andalis AA, Storchova Z, Styles C, Galitski T, Pellman D, Fink GR. Defects arising from whole-genome duplications in Saccharomyces cerevisiae. Genetics. 2004;167(3):1109–21. https://doi.org/10.1534/genetics.104.029256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuznetsova AY, Seget K, Moeller GK, de Pagter MS, de Roos JADM, Dürrbaum M, Kuffer C, Müller S, Zaman GJR, Kloosterman WP, Storchová Z. Chromosomal instability, tolerance of mitotic errors and multidrug resistance are promoted by tetraploidization in human cells. Cell Cycle. 2015;14(17):2810–20. https://doi.org/10.1080/15384101.2015.1068482.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandve SR, Rohlfs RV, Hvidsten TR. Subfunctionalization versus neofunctionalization after whole-genome duplication. Nat Genet. 2018;50(7):908–9. https://doi.org/10.1038/s41588-018-0162-4.
Article
CAS
PubMed
Google Scholar
Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169(7):1177–86. https://doi.org/10.1016/j.cell.2017.05.038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verta J-P, Jones FC. Predominance of cis-regulatory changes in parallel expression divergence of sticklebacks. elife. 2019;8. https://doi.org/10.7554/eLife.43785.
Ishikawa A, Kabeya N, Ikeya K, Kakioka R, Cech JN, Osada N, Leal MC, Inoue J, Kume M, Toyoda A, Tezuka A, Nagano AJ, Yamasaki YY, Suzuki Y, Kokita T, Takahashi H, Lucek K, Marques D, Takehana Y, Naruse K, Mori S, Monroig O, Ladd N, Schubert CJ, Matthews B, Peichel CL, Seehausen O, Yoshizaki G, Kitano J. A key metabolic gene for recurrent freshwater colonization and radiation in fishes. Science. 2019;364(6443):886–9. https://doi.org/10.1126/science.aau5656.
Article
CAS
PubMed
Google Scholar
Song MJ, Potter B, Doyle JJ, Coate JE. Gene balance predicts transcriptional responses immediately following ploidy change in Arabidopsis thaliana. Plant Cell. 2020;32(5):1434–48. https://doi.org/10.1105/tpc.19.00832.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkley DR, Zimin A, Grammes F, Grove H, Gjuvsland A, Walenz B, Hermansen RA, von Schalburg K, Rondeau EB, di Genova A, Samy JKA, Olav Vik J, Vigeland MD, Caler L, Grimholt U, Jentoft S, Inge Våge D, de Jong P, Moen T, Baranski M, Palti Y, Smith DR, Yorke JA, Nederbragt AJ, Tooming-Klunderud A, Jakobsen KS, Jiang X, Fan D, Hu Y, Liberles DA, Vidal R, Iturra P, Jones SJM, Jonassen I, Maass A, Omholt SW, Davidson WS. The Atlantic salmon genome provides insights into rediploidization. Nature. 2016;533(7602):200–5. https://doi.org/10.1038/nature17164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marlétaz F, Firbas PN, Maeso I, Tena JJ, Bogdanovic O, Perry M, Wyatt CDR, de la Calle-Mustienes E, Bertrand S, Burguera D, Acemel RD, van Heeringen SJ, Naranjo S, Herrera-Ubeda C, Skvortsova K, Jimenez-Gancedo S, Aldea D, Marquez Y, Buono L, Kozmikova I, Permanyer J, Louis A, Albuixech-Crespo B, le Petillon Y, Leon A, Subirana L, Balwierz PJ, Duckett PE, Farahani E, Aury JM, Mangenot S, Wincker P, Albalat R, Benito-Gutiérrez È, Cañestro C, Castro F, D’Aniello S, Ferrier DEK, Huang S, Laudet V, Marais GAB, Pontarotti P, Schubert M, Seitz H, Somorjai I, Takahashi T, Mirabeau O, Xu A, Yu JK, Carninci P, Martinez-Morales JR, Crollius HR, Kozmik Z, Weirauch MT, Garcia-Fernàndez J, Lister R, Lenhard B, Holland PWH, Escriva H, Gómez-Skarmeta JL, Irimia M. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature. 2018;564(7734):64–70. https://doi.org/10.1038/s41586-018-0734-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Smet R, Sabaghian E, Li Z, Saeys Y, Van de Peer Y. Coordinated functional divergence of genes after genome duplication in Arabidopsis thaliana. Plant Cell. 2017;29(11):2786–800. https://doi.org/10.1105/tpc.17.00531.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodgers-Melnick E, Mane SP, Dharmawardhana P, Slavov GT, Crasta OR, Strauss SH, Brunner AM, DiFazio SP. Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus. Genome Res. 2012;22(1):95–105. https://doi.org/10.1101/gr.125146.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hallin J, Landry CR. Regulation plays a multifaceted role in the retention of gene duplicates. PLoS Biol. 2019;17(11):e3000519. https://doi.org/10.1371/journal.pbio.3000519.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rohlfs RV, Nielsen R. Phylogenetic ANOVA: the expression variance and evolution model for quantitative trait evolution. Syst Biol. 2015;64(5):695–708. https://doi.org/10.1093/sysbio/syv042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rohlfs RV, Harrigan P, Nielsen R. Modeling gene expression evolution with an extended Ornstein-Uhlenbeck process accounting for within-species variation. Mol Biol Evol. 2014;31(1):201–11. https://doi.org/10.1093/molbev/mst190.
Article
CAS
PubMed
Google Scholar
Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, Bento P, da Silva C, Labadie K, Alberti A, Aury JM, Louis A, Dehais P, Bardou P, Montfort J, Klopp C, Cabau C, Gaspin C, Thorgaard GH, Boussaha M, Quillet E, Guyomard R, Galiana D, Bobe J, Volff JN, Genêt C, Wincker P, Jaillon O, Crollius HR, Guiguen Y. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun. 2014;5(1):3657. https://doi.org/10.1038/ncomms4657.
Article
PubMed
Google Scholar
Macqueen DJ, Johnston IA. A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proc Biol Sci. 2014;281(1778):20132881. https://doi.org/10.1098/rspb.2013.2881.
Article
PubMed
PubMed Central
Google Scholar
Gout J-F, Lynch M. Maintenance and loss of duplicated genes by dosage subfunctionalization. Mol Biol Evol. 2015;32(8):2141–8. https://doi.org/10.1093/molbev/msv095.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langham RJ, Walsh J, Dunn M, Ko C, Goff SA, Freeling M. Genomic duplication, fractionation and the origin of regulatory novelty. Genetics. 2004;166(2):935–45. https://doi.org/10.1534/genetics.166.2.935.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conant GC. The continuing impact of an ancient polyploidy on the genomes of teleosts. BioRxiv. 2019. https://doi.org/10.1101/619205.
Xu P, Xu J, Liu G, Chen L, Zhou Z, Peng W, Jiang Y, Zhao Z, Jia Z, Sun Y, Wu Y, Chen B, Pu F, Feng J, Luo J, Chai J, Zhang H, Wang H, Dong C, Jiang W, Sun X. The allotetraploid origin and asymmetrical genome evolution of the common carp Cyprinus carpio. Nat Commun. 2019;10(1):4625. https://doi.org/10.1038/s41467-019-12644-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Birchler JA, Veitia RA. Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci U S A. 2012;109(37):14746–53. https://doi.org/10.1073/pnas.1207726109.
Article
PubMed
PubMed Central
Google Scholar
Otto W, Stadler PF, López-Giraldéz F, Townsend JP, Lynch VJ, Wagner GP. Measuring transcription factor-binding site turnover: a maximum likelihood approach using phylogenies. Genome Biol Evol. 2009;1:85–98. https://doi.org/10.1093/gbe/evp010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lau HH, Ng NHJ, Loo LSW, Jasmen JB, Teo AKK. The molecular functions of hepatocyte nuclear factors - in and beyond the liver. J Hepatol. 2018;68(5):1033–48. https://doi.org/10.1016/j.jhep.2017.11.026.
Article
CAS
PubMed
Google Scholar
Prosdocimo DA, Anand P, Liao X, Zhu H, Shelkay S, Artero-Calderon P, Zhang L, Kirsh J, Moore D'V, Rosca MG, Vazquez E, Kerner J, Akat KM, Williams Z, Zhao J, Fujioka H, Tuschl T, Bai X, Schulze PC, Hoppel CL, Jain MK, Haldar SM. Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism. J Biol Chem. 2014;289(9):5914–24. https://doi.org/10.1074/jbc.M113.531384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carmona-Antoñanzas G, Tocher DR, Martinez-Rubio L, Leaver MJ. Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals. Gene. 2014;534(1):1–9. https://doi.org/10.1016/j.gene.2013.10.040.
Article
CAS
PubMed
Google Scholar
Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet. 2008;9(5):397–405. https://doi.org/10.1038/nrg2337.
Article
CAS
PubMed
PubMed Central
Google Scholar
Storchova Z, Pellman D. From polyploidy to aneuploidy, genome instability and cancer. Nat Rev Mol Cell Biol. 2004;5:45–54. https://doi.org/10.1038/nrm1276.
Article
CAS
PubMed
Google Scholar
Storchová Z, Breneman A, Cande J, Dunn J, Burbank K, O’Toole E, Pellman D. Genome-wide genetic analysis of polyploidy in yeast. Nature. 2006;443:541–7. https://doi.org/10.1038/nature05178.
Article
CAS
PubMed
Google Scholar
Marburger S, Monnahan P, Seear PJ, Martin SH, Koch J, Paajanen P, Bohutínská M, Higgins JD, Schmickl R, Yant L. Interspecific introgression mediates adaptation to whole genome duplication. Nat Commun. 2019;10(1):5218. https://doi.org/10.1038/s41467-019-13159-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hollister JD, Arnold BJ, Svedin E, Xue KS, Dilkes BP, Bomblies K. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet. 2012;8(12):e1003093. https://doi.org/10.1371/journal.pgen.1003093.
Article
PubMed
PubMed Central
Google Scholar
Roh M, van der Meer R, Abdulkadir SA. Tumorigenic polyploid cells contain elevated ROS and ARE selectively targeted by antioxidant treatment. J Cell Physiol. 2012;227(2):801–12. https://doi.org/10.1002/jcp.22793.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomson GJ, Hernon C, Austriaco N, Shapiro RS, Belenky P, Bennett RJ. Metabolism-induced oxidative stress and DNA damage selectively trigger genome instability in polyploid fungal cells. EMBO J. 2019;38:e101597. https://doi.org/10.15252/embj.2019101597.
Article
CAS
PubMed
PubMed Central
Google Scholar
del Pozo JC, Ramirez-Parra E. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. Plant Cell Environ. 2014;37(12):2722–37. https://doi.org/10.1111/pce.12344.
Article
CAS
PubMed
Google Scholar
Zhou X, Liao W-J, Liao J-M, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol. 2015;7(2):92–104. https://doi.org/10.1093/jmcb/mjv014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conant GC, Wolfe KH. Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet. 2008;9(12):938–50. https://doi.org/10.1038/nrg2482.
Article
CAS
PubMed
Google Scholar
De Smet R, Adams KL, Vandepoele K, Van Montagu MCE, Maere S, Van de Peer Y. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc Natl Acad Sci U S A. 2013;110(8):2898–903. https://doi.org/10.1073/pnas.1300127110.
Article
PubMed
PubMed Central
Google Scholar
Blanc G, Wolfe KH. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell. 2004;16(7):1679–91. https://doi.org/10.1105/tpc.021410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roux J, Liu J, Robinson-Rechavi M. Selective constraints on coding sequences of nervous system genes are a major determinant of duplicate gene retention in vertebrates. Mol Biol Evol. 2017;34(11):2773–91. https://doi.org/10.1093/molbev/msx199.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh PP, Affeldt S, Cascone I, Selimoglu R, Camonis J, Isambert H. On the expansion of “dangerous” gene repertoires by whole-genome duplications in early vertebrates. Cell Rep. 2012;2(5):1387–98. https://doi.org/10.1016/j.celrep.2012.09.034.
Article
CAS
PubMed
Google Scholar
Lan X, Pritchard JK. Coregulation of tandem duplicate genes slows evolution of subfunctionalization in mammals. Science. 2016;352(6288):1009–13. https://doi.org/10.1126/science.aad8411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kulkarni MM, Arnosti DN. Information display by transcriptional enhancers. Development. 2003;130(26):6569–75. https://doi.org/10.1242/dev.00890.
Article
CAS
PubMed
Google Scholar
Christensen KA, Rondeau EB, Minkley DR, Leong JS, Nugent CM, Danzmann RG, Ferguson MM, Stadnik A, Devlin RH, Muzzerall R, Edwards M, Davidson WS, Koop BF. Retraction: the Arctic charr (Salvelinus alpinus) genome and transcriptome assembly. PLoS One. 2021;16(2):e0247083. https://doi.org/10.1371/journal.pone.0247083.
Article
PubMed
PubMed Central
Google Scholar
Varadharajan S, Sandve SR, Gillard GB, Tørresen OK, Mulugeta TD, Hvidsten TR, Lien S, Asbjørn Vøllestad L, Jentoft S, Nederbragt AJ, Jakobsen KS. The grayling genome reveals selection on gene expression regulation after whole-genome duplication. Genome Biol Evol. 2018;10(10):2785–800. https://doi.org/10.1093/gbe/evy201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238. https://doi.org/10.1186/s13059-019-1832-y.
Article
PubMed
PubMed Central
Google Scholar
Gillard G, Harvey TN, Gjuvsland A, Jin Y, Thomassen M, Lien S, Leaver M, Torgersen JS, Hvidsten TR, Vik JO, Sandve SR. Life-stage-associated remodelling of lipid metabolism regulation in Atlantic salmon. Mol Ecol. 2018;27(5):1200–13. https://doi.org/10.1111/mec.14533.
Article
CAS
PubMed
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
PubMed
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323. https://doi.org/10.1186/1471-2105-12-323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
CAS
PubMed
Google Scholar
Smith MD, Wertheim JO, Weaver S, Murrell B, Scheffler K, Kosakovsky Pond SL. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol Biol Evol. 2015;32(5):1342–53. https://doi.org/10.1093/molbev/msv022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosakovsky Pond SL, Poon AFY, Velazquez R, Weaver S, Hepler NL, Murrell B, Shank SD, Magalis BR, Bouvier D, Nekrutenko A, Wisotsky S, Spielman SJ, Frost SDW, Muse SV. HyPhy 2.5-a customizable platform for evolutionary hypothesis testing using phylogenies. Mol Biol Evol. 2020;37(1):295–9. https://doi.org/10.1093/molbev/msz197.
Article
CAS
PubMed
Google Scholar
Giurgiu M, Reinhard J, Brauner B, Dunger-Kaltenbach I, Fobo G, Frishman G, Montrone C, Ruepp A. CORUM: the comprehensive resource of mammalian protein complexes-2019. Nucleic Acids Res. 2019;47(D1):D559–63. https://doi.org/10.1093/nar/gky973.
Article
CAS
PubMed
Google Scholar
Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA, Vesuna S, Satpathy AT, Rubin AJ, Montine KS, Wu B, Kathiria A, Cho SW, Mumbach MR, Carter AC, Kasowski M, Orloff LA, Risca VI, Kundaje A, Khavari PA, Montine TJ, Greenleaf WJ, Chang HY. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods. 2017;14(10):959–62. https://doi.org/10.1038/nmeth.4396.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 2015;109(1):21.29.1–9. https://doi.org/10.1002/0471142727.mb2129s109.
Article
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;arXiv:1303.3997.
Gaspar JM. Improved peak-calling with MACS2. BioRxiv. 2018. https://doi.org/10.1101/496521.
Bentsen M, Goymann P, Schultheis H, Klee K, Petrova A, Wiegandt R, Fust A, Preussner J, Kuenne C, Braun T, Kim J, Looso M. ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation. Nat Commun. 2020;11(1):4267. https://doi.org/10.1038/s41467-020-18035-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, Modi BP, Correard S, Gheorghe M, Baranašić D, Santana-Garcia W, Tan G, Chèneby J, Ballester B, Parcy F, Sandelin A, Lenhard B, Wasserman WW, Mathelier A. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48:D87–92. https://doi.org/10.1093/nar/gkz1001.
Article
CAS
PubMed
Google Scholar
Gillard GB, Grøenvold L, Sandve SR, Hvidsten TR. Gillard Groenvold GitLab repository. GitLab. 2020; https://gitlab.com/sandve-lab/gillard-groenvold.
Gillard GB, Grønvold L, Hvidsten TR, Sandve SR. Gillard Groenvold source code. Zenodo. 2021. https://doi.org/10.5281/zenodo.4478402.
Gillard GB, Sandve SR. RNA-seq of tissue panel samples from zebrafish (Danio rerio), medaka (Oryzias latipes), and rainbow trout (Oncorhynchus mykiss). E-MTAB-8959. ArrayExpress. 2020; https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8959/.
Gillard GB, Sandve SR, Rondeau EB, Koop BF. RNA-Seq of liver tissue samples from northern pike (Esox lucius), coho salmon (Oncorhynchus kisutch) and Arctic charr (Salvelinus alpinus). E-MTAB-8962. ArrayExpress. 2020; https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8962/.
Røsæg LL, Holen MM, Sandve SR, Kent MP, Lien S. Fresh versus slow-frozen ATACseq samples for salmon tissues. E-MTAB-9001. ArrayExpress. 2020; https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9001/.