Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, Hangartner TN, et al. Tracking of bone mass and density during childhood and adolescence. J Clin Endocrinol Metab. 2010;95(4):1690–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.
Article
Google Scholar
Schettler AE, Gustafson EM. Osteoporosis prevention starts in adolescence. J Am Acad Nurse Pract. 2004;16(7):274–82.
Article
PubMed
Google Scholar
Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281–386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rauch F, Schoenau E. Changes in bone density during childhood and adolescence: an approach based on Bone’s biological organization. J Bone Miner Res. 2001;16(4):597–604.
Article
CAS
PubMed
Google Scholar
Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, et al. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2018; Available from: http://www.nature.com/articles/s41588-018-0302-x. [cited 2019 Jan 23].
Estrada K, Styrkarsdottir U, Evangelou E, Hsu Y-H, Duncan EL, Ntzani EE, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kemp JP, Morris JA, Medina-Gomez C, Forgetta V, Warrington NM, Youlten SE, et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nat Genet. 2017;49(10):1468–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chesi A, Mitchell JA, Kalkwarf HJ, Bradfield JP, Lappe JM, Cousminer DL, et al. A genomewide association study identifies two sex-specific loci, at SPTB and IZUMO3, influencing pediatric bone mineral density at multiple skeletal sites: GWAS identifies two sex-specific loci influencing pediatric BMD. J Bone Miner Res. 2017;32(6):1274–81.
Article
CAS
PubMed
Google Scholar
Kemp JP, Medina-Gomez C, Estrada K, St Pourcain B, Heppe DHM, Warrington NM, et al. Phenotypic dissection of bone mineral density reveals skeletal site specificity and facilitates the identification of novel loci in the genetic regulation of bone mass attainment. Williams SM, editor. Plos Genet. 2014 10(6):e1004423.
Medina-Gomez C, Kemp JP, Trajanoska K, Luan J, Chesi A, Ahluwalia TS, et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am J Hum Genet. 2018;102(1):88–102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitchell JA, Chesi A, Elci O, McCormack SE, Kalkwarf HJ, Lappe JM, et al. Genetics of bone mass in childhood and adolescence: effects of sex and maturation interactions. J Bone Miner Res. 2015;30(9):1676–83.
Article
CAS
PubMed
Google Scholar
Cousminer DL, McCormack SE, Mitchell JA, Chesi A, Kindler JM, Kelly A, et al. Postmenopausal osteoporotic fracture-associated COLIA1 variant impacts bone accretion in girls. Bone. 2019;121:221–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rowley MJ, Corces VG. Organizational principles of 3D genome architecture. Nat Rev Genet. 2018;19(12):789–800.
Article
CAS
PubMed
Google Scholar
Chesi A, Wagley Y, Johnson ME, Manduchi E, Su C, Lu S, et al. Genome-scale Capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nat Commun. 2019;10(1):1260.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for Black and non-Black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96(10):3160–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cole TJ, Kuh D, Johnson W, Ward KA, Howe LD, Adams JE, et al. Using Super-Imposition by Translation And Rotation (SITAR) to relate pubertal growth to bone health in later life: the Medical Research Council (MRC) National Survey of Health and Development. Int J Epidemiol. 2016;45(4):1125–34.
CAS
PubMed
PubMed Central
Google Scholar
McCormack SE, Cousminer DL, Chesi A, Mitchell JA, Roy SM, Kalkwarf HJ, et al. Association between linear growth and bone accrual in a diverse cohort of children and adolescents. JAMA Pediatr. 2017;171(9):e171769.
Article
PubMed
PubMed Central
Google Scholar
Zheng J, Richardson TG, Millard LAC, Hemani G, Elsworth BL, Raistrick CA, et al. PhenoSpD: an integrated toolkit for phenotypic correlation estimation and multiple testing correction using GWAS summary statistics. GigaScience. 2018;7(8) Available from: https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giy090/5078867. [cited 2019 Sep 10].
Nyholt DR. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet. 2004;74(4):765–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trajanoska K, Morris JA, Oei L, Zheng H-F, Evans DM, Kiel DP, et al. Assessment of the genetic and clinical determinants of fracture risk: genome wide association and Mendelian randomisation study. BMJ. 2018;362:k3225.
Article
PubMed
PubMed Central
Google Scholar
Zheng H, AOGC Consortium, UK10K Consortium, Forgetta V, Hsu Y, Estrada K, et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature. 2015;526(7571) Available from: http://www.nature.com/articles/nature14878. [cited 2019 Aug 7].
Bozec A, Bakiri L, Hoebertz A, Eferl R, Schilling AF, Komnenovic V, et al. Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia. Nature. 2008;454(7201):221–5.
Article
CAS
PubMed
Google Scholar
Hong J-H. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005;309(5737):1074–8.
Article
CAS
PubMed
Google Scholar
Karim Z, Gérard B, Bakouh N, Alili R, Leroy C, Beck L, et al. NHERF1 mutations and responsiveness of renal parathyroid hormone. N Engl J Med. 2008;359(11):1128–35.
Article
CAS
PubMed
Google Scholar
Kinoshita A, Saito T, Tomita H, Makita Y, Yoshida K, Ghadami M, et al. Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat Genet. 2000;26(1):19–20.
Article
CAS
PubMed
Google Scholar
Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, et al. A twist code determines the onset of osteoblast differentiation. Dev Cell. 2004;6(3):423–35.
Article
CAS
PubMed
Google Scholar
Marchegiani S, Davis T, Tessadori F, van Haaften G, Brancati F, Hoischen A, et al. Recurrent mutations in the basic domain of TWIST2 cause ablepharon macrostomia and Barber-Say syndromes. Am J Hum Genet. 2015;97(1):99–110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang D-C, Tsai C-C, Liao Y-F, Fu H-C, Tsay H-J, Huang T-F, et al. Twist controls skeletal development and dorsoventral patterning by regulating Runx2 in zebrafish. Milstone DS, editor. Plos One. 2011;6(11):e27324.
Bradley EW, Carpio LR, van Wijnen AJ, McGee-Lawrence ME, Westendorf JJ. Histone deacetylases in bone development and skeletal disorders. Physiol Rev. 2015;95(4):1359–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakatani T, Chen T, Johnson J, Westendorf JJ, Partridge NC. The deletion of Hdac4 in mouse osteoblasts influences both catabolic and anabolic effects in bone: catabolic and anabolic effects of HDAC4 deletion in osteoblasts. J Bone Miner Res. 2018;33(7):1362–75.
Article
CAS
PubMed
Google Scholar
Li S, Xu W, Xing Z, Qian J, Chen L, Gu R, et al. A conditional knockout mouse model reveals a critical role of PKD1 in osteoblast differentiation and bone development. Sci Rep. 2017;7(1):40505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gadi J, Jung S-H, Lee M-J, Jami A, Ruthala K, Kim K-M, et al. The transcription factor protein Sox11 enhances early osteoblast differentiation by facilitating proliferation and the survival of mesenchymal and osteoblast progenitors. J Biol Chem. 2013;288(35):25400–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Way GP, Youngstrom DW, Hankenson KD, Greene CS, Grant SF. Implicating candidate genes at GWAS signals by leveraging topologically associating domains. Eur J Hum Genet. 2017;25(11):1286–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levy-Apter E, Finkelshtein E, Vemulapalli V, Li SS-C, Bedford MT, Elson A. Adaptor protein GRB2 promotes Src tyrosine kinase activation and podosomal organization by protein-tyrosine phosphatase ϵ in osteoclasts. J Biol Chem. 2014;289(52):36048–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patterson VL, Damrau C, Paudyal A, Reeve B, Grimes DT, Stewart ME, et al. Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway. Hum Mol Genet. 2009;18(10):1719–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cakouros D, Hemming S, Gronthos K, Liu R, Zannettino A, Shi S, et al. Specific functions of TET1 and TET2 in regulating mesenchymal cell lineage determination. Epigenetics Chromatin. 2019;12(1):3.
Article
PubMed
PubMed Central
Google Scholar
Ramasamy SK, Kusumbe AP, Wang L, Adams RH. Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature. 2014;507(7492):376–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller CH, Smith SM, Elguindy M, Zhang T, Xiang JZ, Hu X, et al. RBP-J–regulated miR-182 promotes TNF-α–induced osteoclastogenesis. JI. 2016;196(12):4977–86.
CAS
Google Scholar
Almeida M. Unraveling the role of FoxOs in bone—insights from mouse models. Bone. 2011;49(3):319–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
GTEx Consortium, Gamazon ER, Segrè AV, van de Bunt M, Wen X, Xi HS, et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat Genet. 2018;50(7):956–67.
Article
PubMed Central
CAS
Google Scholar
Levi G, Topilko P, Schneider-Maunoury S, Lasagna M, Mantero S, Cancedda R, et al. Defective bone formation in Krox-20 mutant mice. Development. 1996;122(1):113–20.
CAS
PubMed
Google Scholar
Krüger I, Vollmer M, Simmons D, Elsässer H-P, Philipsen S, Suske G. Sp1/Sp3 compound heterozygous mice are not viable: impaired erythropoiesis and severe placental defects. Dev Dyn. 2007;236(8):2235–44.
Article
PubMed
CAS
Google Scholar
Göllner H, Dani C, Phillips B, Philipsen S, Suske G. Impaired ossification in mice lacking the transcription factor Sp3. Mech Dev. 2001;106(1–2):77–83.
Article
PubMed
Google Scholar
Clarke B. Normal bone anatomy and physiology. CJASN. 2008;3(Supplement 3):S131–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hahn F, Chu W, Cheung J. CT measurements of cranial growth: normal subjects. Am J Roentgenol. 1984;142(6):1253–5.
Article
CAS
Google Scholar
Zhao H, Zhou W, Yao Z, Wan Y, Cao J, Zhang L, et al. Foxp1/2/4 regulate endochondral ossification as a suppresser complex. Dev Biol. 2015;398(2):242–54.
Article
CAS
PubMed
Google Scholar
Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103(9):1345–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geneviève D, Proulle V, Isidor B, Bellais S, Serre V, Djouadi F, et al. Thromboxane synthase mutations in an increased bone density disorder (Ghosal syndrome). Nat Genet. 2008;40(3):284–6.
Article
PubMed
CAS
Google Scholar
Shinohara M, Koga T, Okamoto K, Sakaguchi S, Arai K, Yasuda H, et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell. 2008;132(5):794–806.
Article
CAS
PubMed
Google Scholar
Gao Y, Qian W-P, Dark K, Toraldo G, Lin ASP, Guldberg RE, et al. Estrogen prevents bone loss through transforming growth factor signaling in T cells. Proc Natl Acad Sci. 2004;101(47):16618–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morón FJ, Mendoza N, Vázquez F, Molero E, Quereda F, Salinas A, et al. Multilocus analysis of estrogen-related genes in Spanish postmenopausal women suggests an interactive role of ESR1, ESR2 and NRIP1 genes in the pathogenesis of osteoporosis. Bone. 2006;39(1):213–21.
Article
PubMed
CAS
Google Scholar
Yang D, Guo J, Divieti P, Shioda T, Bringhurst FR. CBP/p300-interacting protein CITED1 modulates parathyroid hormone regulation of osteoblastic differentiation. Endocrinology. 2008;149(4):1728–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, et al. Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell. 2004;119(4):555–66.
Article
CAS
PubMed
Google Scholar
Chu Y, Zhao Z, Sant DW, Zhu G, Greenblatt SM, Liu L, et al. Tet2 regulates osteoclast differentiation by interacting with Runx1 and maintaining genomic 5-hydroxymethylcytosine (5hmC). Genomics Proteomics Bioinformatics. 2018;16(3):172–86.
Article
PubMed
PubMed Central
Google Scholar
Matsumoto Y, La Rose J, Kent OA, Wagner MJ, Narimatsu M, Levy AD, et al. Reciprocal stabilization of ABL and TAZ regulates osteoblastogenesis through transcription factor RUNX2. J Clin Investig. 2016;126(12):4482–96.
Article
PubMed
PubMed Central
Google Scholar
Bollag WB, Choudhary V, Zhong Q, Ding K-H, Xu J, Elsayed R, et al. Deletion of protein kinase D1 in osteoprogenitor cells results in decreased osteogenesis in vitro and reduced bone mineral density in vivo. Mol Cell Endocrinol. 2018;461:22–31.
Article
CAS
PubMed
Google Scholar
Nesbit MA, Hannan FM, Howles SA, Babinsky VN, Head RA, Cranston T, et al. Mutations affecting G-protein subunit α11 in hypercalcemia and hypocalcemia. N Engl J Med. 2013;368(26):2476–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, Chen L, Wang Z. Aesculin modulates bone metabolism by suppressing receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and transduction signals. Biochem Biophys Res Commun. 2017;488(1):15–21.
Article
CAS
PubMed
Google Scholar
Tsurusaki Y, Koshimizu E, Ohashi H, Phadke S, Kou I, Shiina M, et al. De novo SOX11 mutations cause Coffin–Siris syndrome. Nat Commun. 2014;5(1):4011.
Article
CAS
PubMed
Google Scholar
Kim B-J, Lee Y-S, Lee S-Y, Baek W-Y, Choi YJ, Moon SA, et al. Osteoclast-secreted SLIT3 coordinates bone resorption and formation. J Clin Investig. 2018;128(4):1429–41.
Article
PubMed
PubMed Central
Google Scholar
Andrade AC, Jee YH, Nilsson O. New genetic diagnoses of short stature provide insights into local regulation of childhood growth. Horm Res Paediatr. 2017;88(1):22–37.
Article
CAS
PubMed
Google Scholar
Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH. Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat Genet. 1996;14(2):203–5.
Article
CAS
PubMed
Google Scholar
Uitterlinden AG, Burger H, Huang Q, Yue F, McGuigan FEA, Grant SFA, et al. Relation of alleles of the collagen type Iα1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med. 1998;338(15):1016–21.
Article
CAS
PubMed
Google Scholar
Deardorff MA, Kaur M, Yaeger D, Rampuria A, Korolev S, Pie J, et al. Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet. 2007;80(3):485–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Phil Trans R Soc B. 2013;368(1612):20120431.
Article
PubMed
CAS
PubMed Central
Google Scholar
Somner J, McLellan S, Cheung J, Mak YT, Frost ML, Knapp KM, et al. Polymorphisms in the P450 c17 (17-hydroxylase/17,20-lyase) and P450 c19 (aromatase) genes: association with serum sex steroid concentrations and bone mineral density in postmenopausal women. J Clin Endocrinol Metab. 2004;89(1):344–51.
Article
CAS
PubMed
Google Scholar
Kushwaha P, Wolfgang MJ, Riddle RC. Fatty acid metabolism by the osteoblast. Bone. 2018;115:8–14.
Article
CAS
PubMed
Google Scholar
Högström M, Nordström P, Nordström A. n−3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study. Am J Clin Nutr. 2007;85(3):803–7.
Article
PubMed
Google Scholar
Alonso-Pérez A, Franco-Trepat E, Guillán-Fresco M, Jorge-Mora A, López V, Pino J, et al. Role of toll-like receptor 4 on osteoblast metabolism and function. Front Physiol. 2018;9:504.
Article
PubMed
PubMed Central
Google Scholar
Kim H-N, Iyer S, Ring R, Almeida M. The role of FoxOs in bone health and disease. In: Current Topics in Developmental Biology. Elsevier; 2018. p. 149–63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0070215317300534. [cited 2019 Sep 10].
Bonjour J-P. Calcium and phosphate: a duet of ions playing for bone health. J Am Coll Nutr. 2011;30(sup5):438S–48S.
Article
CAS
PubMed
Google Scholar
Yang W, Han W, Qin A, Wang Z, Xu J, Qian Y. The emerging role of Hippo signaling pathway in regulating osteoclast formation. J Cell Physiol. 2018;233(6):4606–17.
Article
CAS
PubMed
Google Scholar
Van Bezooijen RL, Farih-Sips HCM, Papapoulos SE, Löwik CWGM. Interleukin-17: a new bone acting cytokine in vitro. J Bone Miner Res. 1999;14(9):1513–21.
Article
Google Scholar
Huang H, Kim HJ, Chang E-J, Lee ZH, Hwang SJ, Kim H-M, et al. IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling. Cell Death Differ. 2009;16(10):1332–43.
Article
CAS
PubMed
Google Scholar
Croes M, Öner FC, van Neerven D, Sabir E, Kruyt MC, Blokhuis TJ, et al. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation. Bone. 2016;84:262–70.
Article
CAS
PubMed
Google Scholar
Wang Z, Jia Y, Du F, Chen M, Dong X, Chen Y, et al. IL-17A inhibits Osteogenic differentiation of bone Mesenchymal stem cells via Wnt signaling pathway. Med Sci Monit. 2017;23:4095–101.
Article
PubMed
PubMed Central
Google Scholar
Won HY, Lee J-A, Park ZS, Song JS, Kim HY, Jang S-M, et al. Prominent bone loss mediated by RANKL and IL-17 produced by CD4+ T cells in TallyHo/JngJ mice. Niess J-H, editor. Plos One. 2011;6(3):e18168.
Molnár I, Bohaty I, Somogyiné-Vári É. IL-17A-mediated sRANK ligand elevation involved in postmenopausal osteoporosis. Osteoporos Int. 2014;25(2):783–6.
Article
PubMed
CAS
Google Scholar
Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature. 2000;408(6812):600–5.
Article
CAS
PubMed
Google Scholar
Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol. 2009;5(12):667–76.
Article
CAS
PubMed
Google Scholar
Lim HX, Jung H-J, Lee A, Park SH, Han BW, Cho D, et al. Lysyl–transfer RNA synthetase induces the maturation of dendritic cells through MAPK and NF-κB pathways, strongly contributing to enhanced Th1 cell responses. JI. 2018;201(9):2832–41.
CAS
Google Scholar
Park SG, Kim HJ, Min YH, Choi E-C, Shin YK, Park B-J, et al. Human lysyl-tRNA synthetase is secreted to trigger proinflammatory response. Proc Natl Acad Sci. 2005;102(18):6356–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi Y, Yu J, Han W, Fan X, Qian H, Wei H, et al. A splicing isoform of TEAD4 attenuates the Hippo–YAP signalling to inhibit tumour proliferation. Nat Commun. 2016;7(1):ncomms11840.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schütze T, Ulrich AKC, Apelt L, Will CL, Bartlick N, Seeger M, et al. Multiple protein–protein interactions converging on the Prp38 protein during activation of the human spliceosome. RNA. 2016;22(2):265–77.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ. 2016;23(7):1128–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meunier P, Aaron J, Edouard C, VlGNON G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue: a quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971;80:147–54.
Article
CAS
PubMed
Google Scholar
Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology. 2001;2(3):165–71.
Article
CAS
PubMed
Google Scholar
Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell. 2004;3(6):379–89.
Article
CAS
PubMed
Google Scholar
Zhang W, Xu J, Li J, Guo T, Jiang D, Feng X, et al. The TEA domain family transcription factor TEAD4 represses murine adipogenesis by recruiting the cofactors VGLL4 and CtBP2 into a transcriptional complex. J Biol Chem. 2018;293(44):17119–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Zoelen EJ, Duarte I, Hendriks JM, van der Woning SP. TGFβ-induced switch from adipogenic to osteogenic differentiation of human mesenchymal stem cells: identification of drug targets for prevention of fat cell differentiation. Stem Cell Res Ther. 2016;7(1):123.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ndungu A, Payne A, Torres JM, van de Bunt M, McCarthy MI. A multi-tissue transcriptome analysis of human metabolites guides interpretability of associations based on multi-SNP models for gene expression. Am J Hum Genet. 2020;106(2):188–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42(1):97–110.
Article
PubMed
Google Scholar
Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort profile: the ‘children of the 90s’—the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2013;42(1):111–27.
Article
PubMed
Google Scholar
Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, et al. Height adjustment in assessing dual energy X-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab. 2010;95(3):1265–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hakonarson H, Qu H-Q, Bradfield JP, Marchand L, Kim CE, Glessner JT, et al. A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a genome-wide association study. Diabetes. 2008;57(4):1143–6.
Article
CAS
PubMed
Google Scholar
Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42(7):565–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lappe JM, Watson P, Gilsanz V, Hangartner T, Kalkwarf HJ, Oberfield S, et al. The longitudinal effects of physical activity and dietary calcium on bone mass accrual across stages of pubertal development: physical activity and calcium effects on BMC accrual. J Bone Miner Res. 2015;30(1):156–64.
Article
PubMed
Google Scholar
ReproGen Consortium, Psychiatric Genomics Consortium, Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consortium 3, Bulik-Sullivan B, Finucane HK, Anttila V, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47(11):1236–41.
Article
CAS
Google Scholar
Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 2012;44(7):821–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loh P-R, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ, Finucane HK, Salem RM, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet. 2015;47(3):284–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cole TJ, Donaldson MDC, Ben-Shlomo Y. SITAR—a useful instrument for growth curve analysis. Int J Epidemiol. 2010;39(6):1558–66.
Article
PubMed
PubMed Central
Google Scholar