Yanai I, Hashimshony T. Cel-seq2-single-cell RNA sequencing by multiplexed linear amplification. Methods Mol Biol. 2019; 1979:45–56.

CAS
PubMed
Google Scholar

Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015; 161(5):1202–14. https://doi.org/10.1016/j.cell.2015.05.002.

CAS
PubMed
PubMed Central
Google Scholar

Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017; 8:14049. https://doi.org/10.1038/ncomms14049.

CAS
PubMed
PubMed Central
Google Scholar

Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using smart-seq2. Nat Protoc. 2014; 9(1):171–81. https://doi.org/10.1038/nprot.2014.006.

CAS
PubMed
Google Scholar

Datlinger P, Rendeiro AF, Boenke T, Krausgruber T, Barreca D, Bock C. Ultra-high throughput single-cell RNA sequencing by combinatorial fluidic indexing. bioRxiv. 2019. https://doi.org/10.1101/2019.12.17.879304. https://www.biorxiv.org/content/early/2019/12/18/2019.12.17.879304.full.pdf.

McDavid A, Finak G, Chattopadyay PK, Dominguez M, Lamoreaux L, Ma SS, Roederer M, Gottardo R. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics. 2013; 29(4):461–7. https://doi.org/10.1093/bioinformatics/bts714.

CAS
PubMed
Google Scholar

Hicks SC, Townes FW, Teng M, Irizarry RA. Missing data and technical variability in single-cell RNA-sequencing experiments. Biostatistics. 2018; 19(4):562–78. https://doi.org/10.1093/biostatistics/kxx053.

PubMed
Google Scholar

Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014; 11(7):740–2. https://doi.org/10.1038/nmeth.2967.

CAS
PubMed
PubMed Central
Google Scholar

Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, Specht MC, Bernstein BE, Michor F, Ellisen LW. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun. 2018; 9(1):3588. https://doi.org/10.1038/s41467-018-06052-0.

PubMed
PubMed Central
Google Scholar

Lähnemann D, Köster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, Vallejos CA, Campbell KR, Beerenwinkel N, Mahfouz A, Pinello L, Skums P, Stamatakis A, Attolini C. S. -O., Aparicio S, Baaijens J, Balvert M, Barbanson B. d., Cappuccio A, Corleone G, Dutilh BE, Florescu M, Guryev V, Holmer R, Jahn K, Lobo TJ, Keizer EM, Khatri I, Kielbasa SM, Korbel JO, Kozlov AM, Kuo T. -H., Lelieveldt BPF, Mandoiu II, Marioni JC, Marschall T, Mölder F, Niknejad A, Raczkowski L, Reinders M, Ridder J. d., Saliba A. -E., Somarakis A, Stegle O, Theis FJ, Yang H, Zelikovsky A, McHardy AC, Raphael BJ, Shah SP, Schönhuth A. Eleven grand challenges in single-cell data science. Genome Biol. 2020; 21(1):31. https://doi.org/10.1186/s13059-020-1926-6.

PubMed
PubMed Central
Google Scholar

Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M, et al.Science forum: the human cell atlas. Elife. 2017; 6:27041.

Google Scholar

Tabula Muris Consortium, Overall coordination, Logistical coordination, Organ collection and processing, Library preparation and sequencing, Computational data analysis, Cell type annotation, Writing group, Supplemental text writing group, Principal investigators. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018; 562(7727):367–72. https://doi.org/10.1038/s41586-018-0590-4.

Google Scholar

Zhang L ZS. Comparison of computational methods for imputing single-cell RNA-sequencing data. IEEE/ACM Trans Comput Biol Bioinform. 2018; 17:376–89.

PubMed
Google Scholar

Andrews TS, Hemberg M. False signals induced by single-cell imputation. F1000Research. 2019; 7:1740. https://doi.org/10.12688/f1000research.16613.2. Accessed 28 June 2019.

PubMed Central
Google Scholar

Breda J, Zavolan M, van Nimwegen EJ. Bayesian inference of the gene expression states of single cells from scRNA-seq data. bioRxiv. 2019. https://doi.org/10.1101/2019.12.28.889956.

Vieth B, Parekh S, Ziegenhain C, Enard W, Hellmann I. A systematic evaluation of single cell RNA-seq analysis pipelines. Nat Commun. 2019; 10(1):4667. https://doi.org/10.1038/s41467-019-12266-7.

PubMed
PubMed Central
Google Scholar

Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, Kong SL, Chua C, Hon LK, Tan WS, et al.Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet. 2017; 49(5):708.

CAS
PubMed
Google Scholar

Tian L, Dong X, Freytag S, Lê Cao K-A, Su S, JalalAbadi A, Amann-Zalcenstein D, Weber TS, Seidi A, Jabbari JS, Naik SH, Ritchie ME. Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments. Nat Methods. 2019; 16(6):479–87. https://doi.org/10.1038/s41592-019-0425-8.

CAS
PubMed
Google Scholar

Tang W, Bertaux F, Thomas P, Stefanelli C, Saint M, Marguerat SB, Shahrezaei V. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data. Bioinformatics. 2020; 36(4):1174–81.

PubMed
Google Scholar

Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, Murray JI, Raj A, Li M, Zhang NR. Saver: gene expression recovery for single-cell RNA sequencing. Nat Methods. 2018; 15(7):539.

CAS
PubMed
PubMed Central
Google Scholar

Wang J, Agarwal D, Huang M, Hu G, Zhou Z, Ye C, Zhang NR. Data denoising with transfer learning in single-cell transcriptomics. Nat Methods. 2019; 16(9):875–8.

CAS
PubMed
PubMed Central
Google Scholar

Li WV, Li JJ. An accurate and robust imputation method scimpute for single-cell RNA-seq data. Nat Commun. 2018; 9(1):997.

PubMed
PubMed Central
Google Scholar

Miao Z, Li J, Zhang X. screcover: discriminating true and false zeros in single-cell RNA-seq data for imputation. bioRxiv. 2019;:665323.

Chen M, Zhou X. Viper: variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies. Genome Biol. 2018; 19(1):196.

CAS
PubMed
PubMed Central
Google Scholar

Gong W, Kwak I. -Y., Pota P, Koyano-Nakagawa N, Garry DJ. Drimpute: imputing dropout events in single cell RNA sequencing data. BMC Bioinformatics. 2018; 19(1):220.

PubMed
PubMed Central
Google Scholar

Van Dijk D, Sharma R, Nainys J, Yim K, Kathail P, Carr AJ, Burdziak C, Moon KR, Chaffer CL, Pattabiraman D, et al. Recovering gene interactions from single-cell data using data diffusion. Cell. 2018; 174(3):716–29.

CAS
PubMed
PubMed Central
Google Scholar

Wagner F, Yan Y, Yanai I. K-nearest neighbor smoothing for high-throughput single-cell RNA-seq data. bioRxiv. 2017;:217737.

Talwar D, Mongia A, Sengupta D, Majumdar A. Autoimpute: autoencoder based imputation of single-cell RNA-seq data. Sci Rep. 2018; 8(1):16329.

PubMed
PubMed Central
Google Scholar

Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-seq denoising using a deep count autoencoder. Nat Commun. 2019; 10(1):390.

CAS
PubMed
PubMed Central
Google Scholar

Arisdakessian C, Poirion O, Yunits B, Zhu X, Garmire LX. Deepimpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data. Genome Biol. 2019; 20(1):1–14.

CAS
Google Scholar

Amodio M, Van Dijk D, Srinivasan K, Chen WS, Mohsen H, Moon KR, Campbell A, Zhao Y, Wang X, Venkataswamy M, et al.Exploring single-cell data with deep multitasking neural networks. Nat Methods. 2019; 7:1–7.

Google Scholar

Deng Y, Bao F, Dai Q, Wu LF, Altschuler SJ. Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning. Nat Methods. 2019; 16(4):311.

CAS
PubMed
PubMed Central
Google Scholar

Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Methods. 2018; 15(12):1053.

CAS
PubMed
PubMed Central
Google Scholar

Linderman GC, Zhao J, Kluger Y. Zero-preserving imputation of scRNA-seq data using low-rank approximation. bioRxiv. 2018;:397588.

Mongia A, Sengupta D, Majumdar A. Mcimpute: matrix completion based imputation for single cell RNA-seq data. Front Genet. 2019; 10:9.

CAS
PubMed
PubMed Central
Google Scholar

Zhang L, Zhang S. Pblr: an accurate single cell RNA-seq data imputation tool considering cell heterogeneity and prior expression level of dropouts. bioRxiv. 2018;:379883.

Lun ATL, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016; 17:75. https://doi.org/10.1186/s13059-016-0947-7.

PubMed
Google Scholar

Lun A, McCarthy D, Marioni J. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor [version 2; peer review: 3 approved, 2 approved with reservations]. F1000Research. 2016; 5(2122). https://doi.org/10.12688/f1000research.9501.2.

Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oleś AK, Pagès H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015; 12(2):115–21. https://doi.org/10.1038/nmeth.3252.

CAS
PubMed
PubMed Central
Google Scholar

Amezquita RA, Carey VJ, Carpp LN, Geistlinger L, Lun ATL, Marini F, Rue-Albrecht K, Risso D, Soneson C, Waldron L, Pagès H, Smith M, Huber W, Morgan M, Gottardo R, Hicks SC. Orchestrating single-cell analysis with Bioconductor. bioRxiv. 2019:590562. https://doi.org/10.1101/590562.

Spearman C. The proof and measurement of association between two things In: Jenkins JJ, Paterson DG, editors. Studies in individual differences: the search for intelligence. United States: Appleton Century Crofts: 1961.

Google Scholar

Townes FW, Hicks SC, Aryee MJ, Irizarry RA. Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model. Genome Biol. 2019; 20(1):295. https://doi.org/10.1186/s13059-019-1861-6.

CAS
PubMed
PubMed Central
Google Scholar

Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019; 20(1):1–15.

Google Scholar

Vieth B, Ziegenhain C, Parekh S, Enard W, Hellmann I. powsimr: power analysis for bulk and single cell RNA-seq experiments. Bioinformatics. 2017; 33(21):3486–8. https://doi.org/10.1093/bioinformatics/btx435.

CAS
PubMed
Google Scholar

Svensson V. Droplet scRNA-seq is not zero-inflated. Nat Biotechnol. 2020; 38(2):147–50. https://doi.org/10.1038/s41587-019-0379-5.

CAS
PubMed
Google Scholar

Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, McElrath MJ, Prlic M, et al. Mast: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015; 16(1):278.

PubMed
PubMed Central
Google Scholar

Bauer DF. Constructing confidence sets using rank statistics. J Am Stat Assoc. 1972; 67(339):687–90.

Google Scholar

Ye C, Speed TP, Salim A. DECENT: differential expression with capture efficiency adjustmeNT for single-cell RNA-seq data. Bioinformatics. 2019. https://doi.org/10.1093/bioinformatics/btz453.

Lloyd S. Least squares quantization in pcm. IEEE Trans Inf Theory. 1982; 28(2):129–37.

Google Scholar

Xu C, Su Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics. 2015; 31(12):1974–80.

CAS
PubMed
PubMed Central
Google Scholar

Hubert L, Arabie P. Comparing partitions. J Classif. 1985; 2(1):193–218.

Google Scholar

Leland McInnes JM, Healy J. UMAP Uniform Manifold Approximation and Projection for Dimension Reduction. 2018. https://arxiv.org/abs/1802.03426. Accessed date: 6 Dec 2018.

Qiu X, Hill A, Packer J, Lin D, Ma Y. -A., Trapnell C. Single-cell mRNA quantification and differential analysis with Census. Nat Methods. 2017; 14(3):309–15. https://doi.org/10.1038/nmeth.4150.

CAS
PubMed
PubMed Central
Google Scholar

Ji Z, Ji H. Tscan: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 2016; 44(13):117.

Google Scholar

Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ, Majeti R, Chang HY, Greenleaf WJ. Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell. 2018; 173(6):1535–48.

CAS
PubMed
PubMed Central
Google Scholar

Batson J, Royer L, Webber J. Molecular cross-validation for single-cell RNA-seq. bioRxiv. 2019. https://doi.org/10.1101/786269. http://arxiv.org/abs/https://www.biorxiv.org/content/early/2019/09/30/786269.full.pdf.

Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of dna methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001; 10(7):687–92.

CAS
PubMed
Google Scholar

Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence?. Nat Rev Cancer. 2002; 2(10):777–85.

CAS
PubMed
Google Scholar

Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW. Gene expression profiles in normal and cancer cells. Science. 1997; 276(5316):1268–72.

CAS
PubMed
Google Scholar

Yoe J, Kim D, Kim S, Lee Y. Capicua restricts cancer stem cell-like properties in breast cancer cells. Oncogene. 2020; 39(17):3489–506.

CAS
PubMed
Google Scholar

La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K, Kastriti ME, Lönnerberg P, Furlan A, et al. RNA velocity of single cells. Nature. 2018; 560(7719):494–8.

CAS
PubMed
PubMed Central
Google Scholar

Svensson V, Pachter L. RNA velocity: molecular kinetics from single-cell RNA-seq. Mol Cell. 2018; 72(1):7–9.

CAS
PubMed
Google Scholar

Gorin G, Svensson V, Pachter L. RNA velocity and protein acceleration from single-cell multiomics experiments. Genome Biol. 2020; 21:Art–No.

Google Scholar

Burgess DJ. Spatial transcriptomics coming of age. Nat Rev Genet. 2019; 20(6):317.

CAS
PubMed
Google Scholar

10x Genomics. Visium Spatial Gene Expression Solution. https://www.10xgenomics.com/solutions/spatial-gene-expression/. Accessed 23 Jan 2020.

Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch J, Chen LM, Chen F, Macosko EZ. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019; 363(6434):1463–7.

CAS
PubMed
PubMed Central
Google Scholar

Vickovic S, Eraslan G, Salmén F, Klughammer J, Stenbeck L, Schapiro D, Äijö T, Bonneau R, Bergenstråhle L, Navarro JF, et al.High-definition spatial transcriptomics for in situ tissue profiling. Nat Methods. 2019; 16(10):987–90.

CAS
PubMed
PubMed Central
Google Scholar

Moncada R, Wagner F, Chiodin M, Devlin JC, Baron M, Hajdu CH, Simeone DM, Yanai I. Integrating single-cell RNA-seq with spatial transcriptomics in pancreatic ductal adenocarcinoma using multimodal intersection analysis. bioRxiv. 2019;:254375.

Holik AZ, Law CW, Liu R, Wang Z, Wang W, Ahn J, Asselin-Labat M-L, Smyth GK, Ritchie ME. RNA-seq mixology: designing realistic control experiments to compare protocols and analysis methods. Nucleic Acids Res. 2016; 45(5):30.

Google Scholar

Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lönnerberg P, Linnarsson S. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014; 11(2):163.

CAS
PubMed
Google Scholar

Consortium EP, et al.The encode (encyclopedia of dna elements) project. Science. 2004; 306(5696):636–40.

Google Scholar

Zaitsev K, Bambouskova M, Swain A, Artyomov MN. Complete deconvolution of cellular mixtures based on linearity of transcriptional signatures. Nat Commun. 2019; 10(1):2209.

PubMed
PubMed Central
Google Scholar

Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, Snyder MP, Pritchard JK, Kundaje A, Greenleaf WJ, et al.Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet. 2016; 48(10):1193–203.

CAS
PubMed
PubMed Central
Google Scholar

Pliner HA, Packer JS, McFaline-Figueroa JL, Cusanovich DA, Daza RM, Aghamirzaie D, Srivatsan S, Qiu X, Jackson D, Minkina A, et al. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol Cell. 2018; 71(5):858–71.

CAS
PubMed
PubMed Central
Google Scholar

Zhou W, Ji Z, Fang W, Ji H. Global prediction of chromatin accessibility using small-cell-number and single-cell RNA-seq. Nucleic Acids Res. 2019; 47(19):121.

Google Scholar

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995; 57(1):289–300.

Google Scholar

Smyth GK. Limma: linear models for microarray data. In: Bioinformatics and Computational Biology Solutions Using R and Bioconductor. China: Springer: 2005. p. 397–20.

Google Scholar

Sing T, Sander O, Beerenwinkel N, Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics. 2005; 21(20):3940–1.

CAS
PubMed
Google Scholar

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech Theory Exp. 2008; 2008(10):10008.

Google Scholar

Csardi G, Nepusz T, et al.The igraph software package for complex network research. InterJournal, Complex Syst. 2006; 1695(5):1–9.

Google Scholar

Scrucca L, Fop M, Murphy TB, Raftery AE. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J. 2016; 8(1):205–33.

Google Scholar

Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987; 20:53–65.

Google Scholar

Mao Q, Wang L, Goodison S, Sun Y. Dimensionality reduction via graph structure learning. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney NSW Australia. New York: Association for Computing Machinery: 2015. p. 765–74.

Google Scholar

Hou W, Ji Z, Ji H, Hicks SC. A systematic evaluation of single-cell RNA-sequencing imputation methods. 2019. https://github.com/Winnie09/imputationBenchmark. Accessed date: 30 Jul 2020.

Hou W, Ji Z, Ji H, Hicks SC. A systematic evaluation of single-cell RNA-sequencing imputation methods. 2020. https://doi.org/10.5281/zenodo.3967825.

Wickham H. Ggplot2: elegant graphics for data analysis. Use R!Switzerland: Springer; 2016.

Google Scholar