Aguet F, Barbeira AN, Bonazzola R, Brown A, Castel SE, Jo B, et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. bioRxiv. 2019;787903. https://doi.org/10.1101/787903.
Hellwege J, Keaton J, Giri A, Gao X, Velez Edwards DR, Edwards TL. Population stratification in genetic association studies. Curr Protoc Hum Genet. 2017;95:1.22.1–1.22.23.
Google Scholar
Thornton TA, Bermejo JL. Local and global ancestry inference and applications to genetic association analysis for admixed populations. Genet Epidemiol. 2014;38(S1):S5–12.
PubMed
PubMed Central
Google Scholar
Chakraborty R, Weiss KM. Admixture as a tool for finding linked genes and detecting that difference from allelic association between loci. Proc Natl Acad Sci U S A. 1988;85(23):9119–23.
CAS
PubMed
PubMed Central
Google Scholar
Martin ER, Tunc I, Liu Z, Slifer SH, Beecham AH, Beecham GW. Properties of global- and local-ancestry adjustments in genetic association tests in admixed populations. Genet Epidemiol. 2018;42(2):214–29.
PubMed
Google Scholar
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–9.
CAS
PubMed
Google Scholar
GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–13.
PubMed Central
Google Scholar
Liu J, Lewinger JP, Gilliland FD, Gauderman WJ, Conti DV. Confounding and heterogeneity in genetic association studies with admixed populations. Am J Epidemiol. 2013;177(4):351–60.
PubMed
PubMed Central
Google Scholar
Zhang J, Stram DO. The role of local ancestry adjustment in association studies using admixed populations. Genet Epidemiol. 2014;38(6):502–15.
CAS
PubMed
PubMed Central
Google Scholar
Zhong Y, Perera MA, Gamazon ER. On using local ancestry to characterize the genetic architecture of human traits: genetic regulation of gene expression in multiethnic or admixed populations. Am J Hum Genet. 2019;104(6):1097–115.
CAS
PubMed
PubMed Central
Google Scholar
Paşaniuc B, Sankararaman S, Kimmel G, Halperin E. Inference of locus-specific ancestry in closely related populations. Bioinformatics. 2009;25(12):i213–21.
PubMed
PubMed Central
Google Scholar
Duan Q, Xu Z, Raffield LM, Chang S, Wu D, Lange EM, et al. A robust and powerful two-step testing procedure for local ancestry adjusted allelic association analysis in admixed populations. Genet Epidemiol. 2018;42(3):288–302.
PubMed
Google Scholar
Kang SJ, Larkin EK, Song Y, Barnholtz-Sloan J, Baechle D, Feng T, et al. Assessing the impact of global versus local ancestry in association studies. BMC Proc. 2009;3(Suppl 7):S107.
PubMed
PubMed Central
Google Scholar
Qin H, Morris N, Kang SJ, Li M, Tayo B, Lyon H, et al. Interrogating local population structure for fine mapping in genome-wide association studies. Bioinformatics. 2010;26(23):2961–8.
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Zhu X, Qin H, Cooper RS, Ewens WJ, Li C, et al. Adjustment for local ancestry in genetic association analysis of admixed populations. Bioinformatics. 2011;27(5):670–7.
CAS
PubMed
Google Scholar
Chen M, Yang C, Li C, Hou L, Chen X, Zhao H. Admixture mapping analysis in the context of GWAS with GAW18 data. BMC Proc. 2014;8(Suppl 1):S3.
PubMed
PubMed Central
Google Scholar
Pasaniuc B, Zaitlen N, Lettre G, Chen GK, Tandon A, Kao WHL, et al. Enhanced statistical tests for GWAS in admixed populations: assessment using African Americans from CARe and a breast cancer consortium. PLoS Genet. 2011;7(4):e1001371.
Pino-Yanes M, Gignoux CR, Galanter JM, Levin AM, Campbell CD, Eng C, et al. Genome-wide association study and admixture mapping reveal new loci associated with total IgE levels in Latinos. J Allergy Clin Immunol. 2015;135(6):1502–10.
CAS
PubMed
Google Scholar
The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.
Google Scholar
Min JL, Taylor JM, Richards JB, Watts T, Pettersson FH, Broxholme J, et al. The use of genome-wide eQTL associations in lymphoblastoid cell lines to identify novel genetic pathways involved in complex traits. PLoS ONE. 2011;6(7):e22070.
Lovejoy JC, de la Bretonne JA, Klemperer M, Tulley R. Abdominal fat distribution and metabolic risk factors: effects of race. Metabolism. 1996;45(9):1119–24.
CAS
PubMed
Google Scholar
Forouhi NG, Sattar N, McKeigue PM. Relation of C-reactive protein to body fat distribution and features of the metabolic syndrome in Europeans and South Asians. Int J Obes Relat Metab Disord. 2001;25(9):1327–31.
CAS
PubMed
Google Scholar
Yin L, Coelho SG, Ebsen D, Smuda C, Mahns A, Miller SA, et al. Epidermal gene expression and ethnic pigmentation variations among individuals of Asian, European and African ancestry. Exp Dermatol. 2014;23(10):731–5.
PubMed
Google Scholar
Silva AM, Shen W, Heo M, Gallagher D, Wang Z, Sardinha LB, et al. Ethnicity-related skeletal muscle differences across the lifespan. Am J Hum Biol. 2010;22(1):76–82.
PubMed
PubMed Central
Google Scholar
Stewart KA, Higgins PC, McLaughlin CG, Williams TV, Granger E, Croghan TW. Differences in prevalence, treatment, and outcomes of asthma among a diverse population of children with equal access to care: findings from a study in the military health system. Arch Pediatr Adolesc Med. 2010;164(8):720–6.
PubMed
Google Scholar
Maples BK, Gravel S, Kenny EE, Bustamante CD. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am J Hum Genet. 2013;93(2):278–88.
CAS
PubMed
PubMed Central
Google Scholar
Shriner D, Bentley AR, Doumatey AP, Chen G, Zhou J, Adeyemo A, et al. Phenotypic variance explained by local ancestry in admixed African Americans. Front Genet. 2015;6:324. https://doi.org/10.3389/fgene.2015.00324.
Paulding CA, Ruvolo M, Haber DA. The Tre2 (USP6) oncogene is a hominoid-specific gene. Proc Natl Acad Sci U S A. 2003;100(5):2507–11.
CAS
PubMed
PubMed Central
Google Scholar
Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A, et al. Diversity of human copy number variation and multicopy genes. Science. 2010;330(6004):641–6.
CAS
PubMed
PubMed Central
Google Scholar
Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10(5):e1004383.
Benner C, Spencer CCA, Havulinna AS, Salomaa V, Ripatti S, Pirinen M. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics. 2016;32(10):1493–501.
CAS
PubMed
PubMed Central
Google Scholar
Hormozdiari F, van de Bunt M, Segrè AV, Li X, Joo JWJ, Bilow M, et al. Colocalization of GWAS and eQTL signals detects target genes. Am J Hum Genet. 2016;99(6):1245–60.
CAS
PubMed
PubMed Central
Google Scholar
Barbeira AN, Bonazzola R, Gamazon ER, Liang Y, Park Y, Kim-Hellmuth S, et al. Exploiting the GTEx resources to decipher the mechanisms at GWAS loci. bioRxiv. 2020;814350. https://doi.org/10.1101/814350.
Wojcik GL, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR, et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature. 2019;570(7762):514–8.
CAS
PubMed
PubMed Central
Google Scholar
Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005–12.
CAS
PubMed
Google Scholar
Sunadome H, Matsumoto H, Izuhara Y, Nagasaki T, Kanemitsu Y, Ishiyama Y, et al. Correlation between eosinophil count, its genetic background and body mass index: the Nagahama Study. Allergol Int. 2020;69(1):46–52.
PubMed
Google Scholar
Altunoğlu E, Müderrisoğlu C, Erdenen F, Ülgen E, Ar MC. The impact of obesity and insulin resistance on iron and red blood cell parameters: a single center, cross-sectional study. Turk J Hematol. 2014;31(1):61–7.
Google Scholar
Ferrante AW. Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J Intern Med. 2007;262(4):408–14.
CAS
PubMed
Google Scholar
Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132(6):2169–80.
CAS
PubMed
Google Scholar
Price AL, Patterson N, Hancks DC, Myers S, Reich D, Cheung VG, et al. Effects of cis and trans genetic ancestry on gene expression in African Americans. PLoS Genet. 2008;4(12):e1000294.
Hodzic D, Kong C, Wainszelbaum MJ, Charron AJ, Su X, Stahl PD. TBC1D3, a hominoid oncoprotein, is encoded by a cluster of paralogues located on chromosome 17q12. Genomics. 2006;88(6):731–6.
CAS
PubMed
Google Scholar
Yorgov D, Edwards KL, Santorico SA. Use of admixture and association for detection of quantitative trait loci in the Type 2 Diabetes Genetic Exploration by Next-Generation Sequencing in Ethnic Samples (T2D-GENES) study. BMC Proc. 2014;8(Suppl 1):S6.
PubMed
PubMed Central
Google Scholar
Wallace C. Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses. PLoS Genet. 2020;16(4):e1008720.
CAS
PubMed
PubMed Central
Google Scholar
Dobbyn A, Huckins LM, Boocock J, Sloofman LG, Glicksberg BS, Giambartolomei C, et al. Landscape of conditional eQTL in dorsolateral prefrontal cortex and co-localization with schizophrenia GWAS. Am J Hum Genet. 2018;102(6):1169–84.
CAS
PubMed
PubMed Central
Google Scholar
Mogil LS, Andaleon A, Badalamenti A, Dickinson SP, Guo X, Rotter JI, et al. Genetic architecture of gene expression traits across diverse populations. PLoS Genet. 2018;14(8):e1007586.
Baran Y, Pasaniuc B, Sankararaman S, Torgerson DG, Gignoux C, Eng C, et al. Fast and accurate inference of local ancestry in Latino populations. Bioinformatics. 2012;28(10):1359–67.
CAS
PubMed
PubMed Central
Google Scholar
Amariuta T, Ishigaki K, Sugishita H, Ohta T, Matsuda K, Murakami Y, et al. In silico integration of thousands of epigenetic datasets into 707 cell type regulatory annotations improves the trans-ethnic portability of polygenic risk scores. bioRxiv. 2020;959510. https://doi.org/10.1101/2020.02.21.959510.
Rosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I, Boehnke M. Genome-wide association studies in diverse populations. Nat Rev Genet. 2010;11(5):356–66.
CAS
PubMed
PubMed Central
Google Scholar
Zaitlen N, Paşaniuc B, Gur T, Ziv E, Halperin E. Leveraging genetic variability across populations for the identification of causal variants. Am J Hum Genet. 2010;86(1):23–33.
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Hail. https://hail.is/. Accessed 21 Apr 2020.
Delaneau O, Zagury J-F, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods. 2013;10(1):5–6.
CAS
PubMed
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
CAS
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
CAS
PubMed
Google Scholar
DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire M-D, Williams C, et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics. 2012;28(11):1530–2.
CAS
PubMed
PubMed Central
Google Scholar
GTEx Consortium. eQTL discovery pipeline for the GTEx Consortium. GitHub. https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl. Accessed 13 Feb 2018.
Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 2006;34(Database issue):D590–8.
CAS
PubMed
Google Scholar
1000 Genomes FTP. https://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/. Accessed 19 Jan 2018.
Pickrell J. interpolate_maps.py. GitHub. https://github.com/joepickrell/1000-genomes-genetic-maps/blob/master/scripts/interpolate_maps.py. Accessed 19 Jan 2018.
International HapMap Project. HapMap genetic map FTP. ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01_phaseII_B37. Accessed 19 Jan 2018.
Maples BK. RFMix v1.5.4. https://sites.google.com/site/rfmixlocalancestryinference. Accessed 12 Jan 2018.
Martin AR. Ancestry pipeline. GitHub. https://github.com/armartin/ancestry_pipeline. Accessed 26 Jan 2018.
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8.
CAS
PubMed
PubMed Central
Google Scholar
Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat Protoc. 2012;7(3):500–7.
CAS
PubMed
PubMed Central
Google Scholar
Lee D, Bigdeli TB, Riley BP, Fanous AH, Bacanu S-A. DIST: direct imputation of summary statistics for unmeasured SNPs. Bioinformatics. 2013;29(22):2925–7.
CAS
PubMed
PubMed Central
Google Scholar
Pasaniuc B, Zaitlen N, Shi H, Bhatia G, Gusev A, Pickrell J, et al. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Bioinformatics. 2014;30(20):2906–14.
CAS
PubMed
PubMed Central
Google Scholar
Wen X, Pique-Regi R, Luca F. Integrating molecular QTL data into genome-wide genetic association analysis: probabilistic assessment of enrichment and colocalization. PLoS Genet. 2017;13(3):e1006646.
PubMed
PubMed Central
Google Scholar
GTEx Portal. https://gtexportal.org. Accessed 1 July 2020.
Common Fund (CF) Genotype-Tissue Expression Project (GTEx). dbGaP. https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2. Accessed 1 July 2020.
Gay NR, Gloudemans M, Antonio ML, Balliu B, Park Y, Martin AR, et al. Extended data: Impact of admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx [Data set]. Zenodo; 2020. https://doi.org/10.5281/zenodo.3926871.
Barbeira AN, Bonazzola R, Gamazon ER, Liang Y, Park Y, Ardlie K, et al. Publicly available GWAS summary statistics, harmonized and imputed to GTEx v8' variant reference [Data set]. Zenodo; 2020. https://doi.org/10.5281/zenodo.3629742.
Gay NR. gtex-admixture-la. GitHub. https://github.com/nicolerg/gtex-admixture-la. Accessed 1 July 2020.
Gay NR. Source code: impact of admixture and ancestry on eQTL analysis and GWAS colocalization in GTEx. Zenodo; 2020. https://doi.org/10.5281/zenodo.3924788. Accessed 1 July 2020.
Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, et al. A novel approach to high-quality postmortem tissue procurement: the GTEx project. Biopreserv Biobank. 2015;13(5):311–9.
PubMed
PubMed Central
Google Scholar