Muir P, Li S, Lou S, Wang D, Spakowicz DJ, Salichos L, et al. The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biol. 2016;17:53.
Article
PubMed
PubMed Central
CAS
Google Scholar
Erikson GA, Bodian DL, Rueda M, Molparia B, Scott ER, Scott-Van Zeeland AA, et al. Whole-genome sequencing of a healthy aging cohort. Cell. 2016;165:1002–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Telenti A, Pierce LCT, Biggs WH, di Iulio J, Wong EHM, Fabani MM, et al. Deep sequencing of 10,000 human genomes. Proc Natl Acad Sci U S A. 2016;113:11901–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, Oddson A, Gylfason A, et al. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet. 2015;47:435–44.
Article
CAS
PubMed
Google Scholar
Nagasaki M, Yasuda J, Katsuoka F, Nariai N, Kojima K, Kawai Y, et al. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. Nat Commun. 2015;6:8018.
Article
CAS
PubMed
Google Scholar
1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.
Article
CAS
Google Scholar
Consortium PMAS, Project MinE ALS Sequencing Consortium. Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis. Eur J Hum Genet. 2018:1537–46. https://doi.org/10.1038/s41431-018-0177-4.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raczy C, Petrovski R, Saunders CT, Chorny I, Kruglyak S, Margulies EH, et al. Isaac: ultra-fast whole-genome secondary analysis on Illumina sequencing platforms. Bioinformatics. 2013;29:2041–3.
Article
CAS
PubMed
Google Scholar
Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF, WGS500 Consortium, et al. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet. 2014;46:912–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poplin R, Newburger D, Dijamco J, Nguyen N, Loy D, Gross SS, et al. Creating a universal SNP and small indel variant caller with deep neural networks. bioRxiv. 2016. p. 092890. Available from: http://biorxiv.org/content/early/2016/12/21/092890.abstract. [cited 2017 Jun 25].
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing arXiv [q-bio.GN]. 2012. Available from: http://arxiv.org/abs/1207.3907. 29 Apr 2019.
Poplin R, Chang P-C, Alexander D, Schwartz S, Colthurst T, Ku A, et al. A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol. 2018;36:983–7.
Article
CAS
PubMed
Google Scholar
Roller E, Ivakhno S, Lee S, Royce T, Tanner S. Canvas: versatile and scalable detection of copy number variants. Bioinformatics. 2016;32:2375–7.
Article
CAS
PubMed
Google Scholar
Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21:974–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220–2.
Article
CAS
PubMed
Google Scholar
Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 2014;15:R84.
Article
PubMed
PubMed Central
Google Scholar
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72:245–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72:257–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
La Spada AR, Paul TJ. Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat Rev Genet. 2010;11:247–58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hannan AJ. Tandem repeats mediating genetic plasticity in health and disease. Nat Rev Genet. 2018;19:286–98.
Article
CAS
PubMed
Google Scholar
Tang H, Kirkness EF, Lippert C, Biggs WH, Fabani M, Guzman E, et al. Profiling of short-tandem-repeat disease alleles in 12,632 human whole genomes. Am J Hum Genet. 2017;101:700–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tankard RM, Bennett MF, Degorski P, Delatycki MB, Lockhart PJ, Bahlo M. Detecting expansions of tandem repeats in cohorts sequenced with short-read sequencing data. Am J Hum Genet. 2018;103:858–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dolzhenko E, van Vugt JJFA, Shaw RJ, Bekritsky MA, van Blitterswijk M, Narzisi G, et al. Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res. 2017;27:1895–903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dashnow H, Lek M, Phipson B, Halman A, Sadedin S, Lonsdale A, et al. STRetch: detecting and discovering pathogenic short tandem repeat expansions. Genome Biol. 2018;19:121.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dolzhenko E, Deshpande V, Schlesinger F, Krusche P, Petrovski R, Chen S, et al. ExpansionHunter: a sequence-graph-based tool to analyze variation in short tandem repeat regions. Bioinformatics. 2019;35:4754–6.
Article
PubMed
PubMed Central
Google Scholar
Mousavi N, Shleizer-Burko S, Yanicky R, Gymrek M. Profiling the genome-wide landscape of tandem repeat expansions. Nucleic Acids Res. 2019;47:e90.
Article
PubMed
PubMed Central
Google Scholar
Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T, et al. Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet. 2009;85:544–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seixas AI, Loureiro JR, Costa C, Ordóñez-Ugalde A, Marcelino H, Oliveira CL, et al. A pentanucleotide ATTTC repeat insertion in the non-coding region of DAB1, mapping to SCA37, causes spinocerebellar ataxia. Am J Hum Genet. 2017;101:87–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishiura H, Doi K, Mitsui J, Yoshimura J, Matsukawa MK, Fujiyama A, et al. Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat Genet. 2018;50:581–90.
Article
CAS
PubMed
Google Scholar
Corbett MA, Kroes T, Veneziano L, Bennett MF, Florian R, Schneider AL, et al. Intronic ATTTC repeat expansions in STARD7 in familial adult myoclonic epilepsy linked to chromosome 2. Nat Commun. 2019;10:4920.
Article
PubMed
PubMed Central
CAS
Google Scholar
Florian RT, Kraft F, Leitão E, Kaya S, Klebe S, Magnin E, et al. Unstable TTTTA/TTTCA expansions in MARCH6 are associated with familial adult myoclonic epilepsy type 3. Nat Commun. 2019;10:4919.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yeetong P, Pongpanich M, Srichomthong C, Assawapitaksakul A, Shotelersuk V, Tantirukdham N, et al. TTTCA repeat insertions in an intron of YEATS2 in benign adult familial myoclonic epilepsy type 4. Brain. 2019;142:3360–6.
Article
PubMed
Google Scholar
LaCroix AJ, Stabley D, Sahraoui R, Adam MP, Mehaffey M, Kernan K, et al. GGC repeat expansion and exon 1 methylation of XYLT1 is a common pathogenic variant in Baratela-Scott syndrome. Am J Hum Genet. 2019;104:35–44.
Article
CAS
PubMed
Google Scholar
Lalioti MD, Scott HS, Buresi C, Rossier C, Bottani A, Morris MA, et al. Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature. 1997;386:847–51.
Article
CAS
PubMed
Google Scholar
Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17:507–22.
Article
CAS
PubMed
Google Scholar
Illumina. Illumina/Polaris. GitHub. Available from: https://github.com/Illumina/Polaris. 30 Apr 2019.
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karolchik D. The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 2004:493D–496. https://doi.org/10.1093/nar/gkh103.
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cortese A, Simone R, Sullivan R, Vandrovcova J, Tariq H, Yau WY, et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet. 2019;51:649–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rafehi H, Szmulewicz DJ, Bennett MF, Sobreira NLM, Pope K, Smith KR, et al. Bioinformatics-based identification of expanded repeats: a non-reference intronic pentamer expansion in RFC1 causes CANVAS. Am J Hum Genet. 2019;105:151–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W, Doi K, et al. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat Genet. 2019;51:1222–32.
Article
CAS
PubMed
Google Scholar
Mitsuhashi S, Frith MC, Mizuguchi T, Miyatake S, Toyota T, Adachi H, et al. Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads. Genome Biol. 2019;20:58.
Article
PubMed
PubMed Central
Google Scholar
Roeck AD, De Roeck A, De Coster W, Bossaerts L, Cacace R, De Pooter T, et al. NanoSatellite: accurate characterization of expanded tandem repeat length and sequence through whole genome long-read sequencing on PromethION. Genome Biol. 2019. https://doi.org/10.1186/s13059-019-1856-3.
Fotsing SF, Margoliash J, Wang C, Saini S, Yanicky R, Shleizer-Burko S, et al. The impact of short tandem repeat variation on gene expression. Nat Genet. 2019;51:1652–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ewing AD, Houlahan KE, Hu Y, Ellrott K, Caloian C, Yamaguchi TN, et al. Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nat Methods. 2015;12:623–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dolzhenko, Egor; Bennett, Mark F; Richmond, Phillip A; Trost, Brett; Chen, Sai; van Vugt, Joke J F A; Nguyen, Charlotte; Narzisi, Giuseppe; Gainullin, Vladimir G; Gross, Andrew; Lajoie, Bryan; Taft, Ryan J; Wasserman, Wyeth W; Scherer, Stephen W; Veldink, Jan H; Bentley, David R; Yuen, Ryan K C; Bahlo, Melanie; Eberle, Michael A. ExpansionHunter Denovo. Github; 2019. Available from: https://github.com/Illumina/ExpansionHunterDenovo. 8 Dec 2019.
Dolzhenko, Egor; Bennett, Mark F; Richmond, Phillip A; Trost, Brett; Chen, Sai; van Vugt, Joke J F A; Nguyen, Charlotte; Narzisi, Giuseppe; Gainullin, Vladimir G; Gross, Andrew; Lajoie, Bryan; Taft, Ryan J; Wasserman, Wyeth W; Scherer, Stephen W; Veldink, Jan H; Bentley, David R; Yuen, Ryan K C; Bahlo, Melanie; Eberle, Michael A. ExpansionHunter Denovo. 2020. Available from: https://zenodo.org/record/3674022. 18 Feb 2020.
Illumina, Inc. Polaris HiSeq X Diversity Cohort. PRJEB20654. The Eur Nucleotide Arch. 2019. Available from: https://www.ebi.ac.uk/ena/data/view/PRJEB20654. 19 Oct 2018.
Illumina, Inc. Whole genome sequence data for samples with the validated repeat expansions. EGAS00001002462. Eur Genome-phenome Arch. 2017; Available from: https://www.ebi.ac.uk/ega/studies/EGAS00001002462. 19 Oct 2018.