Food and Agriculture Organisation of the United Nations. FAOSTAT statistics database. 2016. http://www.fao.org/faostat/en/#home. Accessed 9 Aug 2018.
Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127:1309–21.
Article
CAS
PubMed
Google Scholar
Hufford MB, Xu X, van Heerwaarden J, Pyhäjärvi T, Chia JM, Cartwright RA, et al. Comparative population genomics of maize domestication and improvement. Nat Genet. 2012;44:808–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cao K, Zheng Z, Wang L, Liu X, Zhu G, Fang W, et al. Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops. Genome Biol. 2014;15:415.
PubMed
PubMed Central
Google Scholar
Purugganan MD, Fuller DQ. Archaeological data reveal slow rates of evolution during plant domestication. Evolution. 2011;65:171–83.
Article
PubMed
Google Scholar
Fuller DQ, Denham T, Arroyo-Kalin M, Lucas L, Stevens CJ, Qin L, et al. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc Natl Acad Sci U S A. 2014;11:6147–52.
Article
CAS
Google Scholar
Abbo S, Lev-Yadun S, Gopher A. Agricultural origins: centers and noncenters – a Near Eastern reappraisal. Crit Rev Plant Sci. 2010;29:317–28.
Article
Google Scholar
Innan H, Kim Y. Pattern of polymorphism after strong artificial selection in a domestication event. Proc Natl Acad Sci U S A. 2004;101:10667–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hillman GC, Davies MS. Domestication rates in wild-type wheats and barley under primitive cultivation. Biol J Linn Soc. 1990;39:39–78.
Article
Google Scholar
Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb). 2011;107:1–15.
Article
CAS
Google Scholar
Cannon SB, May GD, Jackson SA. Three sequenced legume genomes and many crop species: rich opportunities for translational genomics. Plant Physiol. 2009;151:970–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lenser T, Theißen G. Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci. 2013;18:704–14.
Article
CAS
PubMed
Google Scholar
Meyer RS, Purugganan MD. Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet. 2013;14:840–52.
Article
CAS
PubMed
Google Scholar
Huang X, Han B. Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol. 2014;65:531–51.
Article
CAS
PubMed
Google Scholar
Olsen KM, Wendel JF. A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol. 2013;64:47–70.
Article
CAS
PubMed
Google Scholar
Shi J, Lai J. Patterns of genomic changes with crop domestication and breeding. Curr Opin Plant Biol. 2015;24:47–53.
Article
CAS
PubMed
Google Scholar
Bevan MW, Uauy C, Wulff BB, Zhou J, Krasileva K, Clark MD. Genomic innovation for crop improvement. Nature. 2017;543:346–54.
Article
CAS
PubMed
Google Scholar
Turcotte MM, Araki H, Karp DS, Poveda K, Whitehead SR. The eco-evolutionary impacts of domestication and agricultural practices on wild species. Philos Trans R Soc Lond Ser B Biol Sci. 2017;372:20160033.
Gutaker RM, Burbano HA. Reinforcing plant evolutionary genomics using ancient DNA. Curr Opin Plant Biol. 2017;36:38–45.
Article
CAS
PubMed
Google Scholar
Palmer SA, Smith O, Allaby RG. The blossoming of plant archaeogenetics. Ann Anat. 2012;194:146–56.
Article
CAS
PubMed
Google Scholar
Abbo S, Gopher A. Near eastern plant domestication: A history of thought. Trends Plant Sci. 2017;22:491–511.
Article
CAS
PubMed
Google Scholar
Kantar MB, Nashoba AR, Anderson JE, Blackman BK, Rieseberg LH. The genetics and genomics of plant domestication. Bioscience. 2017;67:971–82.
Article
Google Scholar
Pankin A, von Korff M. Co-evolution of methods and thoughts in cereal domestication studies: a tale of barley (Hordeum vulgare). Curr Opin Plant Biol. 2017;36:15–21.
Article
PubMed
Google Scholar
Harlan JR, Zohary D. Distribution of wild wheats and barley. Science. 1966;153:1074–80.
Article
CAS
PubMed
Google Scholar
Dempewolf H, Eastwood RJ, Guarino L, Khoury CK, Müller JV, Toll J. Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives. Agroecol Sust Food. 2014;38:369–77.
Article
Google Scholar
Harlan JR, de Wet JM. Toward a rational classification of cultivated plants. Taxon. 1971;20:509–17.
Briggs WH, McMullen MD, Gaut BS, Doebley J. Linkage mapping of domestication loci in a large maize–teosinte backcross resource. Genetics. 2007;177:1915–28.
Article
PubMed
PubMed Central
Google Scholar
Peng J, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E, et al. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci U S A. 2003;100:2489–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu M-Z, et al. Genetic control of rice plant architecture under domestication. Nat Genet. 2008;40:1365–9.
Article
CAS
PubMed
Google Scholar
Pourkheirandish M, Hensel G, Kilian B, Senthil N, Chen G, Sameri M, et al. Evolution of the grain dispersal system in barley. Cell. 2015;162:527–39.
Article
CAS
PubMed
Google Scholar
Clark RM, Wagler TN, Quijada P, Doebley J. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet. 2006;38:594–7.
Article
CAS
PubMed
Google Scholar
Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJ, et al. The genome of Chenopodium quinoa. Nature. 2017;542:307–12.
Article
CAS
PubMed
Google Scholar
Huang X, Kurata N, Wang Z-X, Wang A, Zhao Q, Zhao Y, et al. A map of rice genome variation reveals the origin of cultivated rice. Nature. 2012;490:497–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koenig D, Jiménez-Gómez JM, Kimura S, Fulop D, Chitwood DH, Headland LR, et al. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci U S A. 2013;110:E2655–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, Chen H, et al. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science. 2014;346:1084–8.
Article
CAS
PubMed
Google Scholar
Feuillet C, Leach JE, Rogers J, Schnable PS, Eversole K. Crop genome sequencing: lessons and rationales. Trends Plant Sci. 2011;16:77–88.
Article
CAS
PubMed
Google Scholar
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.
Article
CAS
PubMed
Google Scholar
International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature. 2005;436:793–800.
Article
CAS
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–5.
Article
CAS
PubMed
Google Scholar
Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, et al. Structural and functional partitioning of bread wheat chromosome 3B. Science. 2014;345:1249721.
Article
CAS
PubMed
Google Scholar
Schulte D, Close TJ, Graner A, Langridge P, Matsumoto T, Muehlbauer G, et al. The international barley sequencing consortium—at the threshold of efficient access to the barley genome. Plant Physiol. 2009;149:142–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–33.
Article
CAS
PubMed
Google Scholar
Beier S, Himmelbach A, Schmutzer T, Felder M, Taudien S, Mayer KF, et al. Multiplex sequencing of bacterial artificial chromosomes for assembling complex plant genomes. Plant Biotechnol J. 2016;14:1511–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li R, Fan W, Tian G, Zhu H, He L, Cai J, et al. The sequence and de novo assembly of the giant panda genome. Nature. 2010;463:311–7.
Article
CAS
PubMed
Google Scholar
Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010;20:265–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clouse JW, Adhikary D, Page JT, Ramaraj T, Deyholos MK, Udall JA, et al. The amaranth genome: genome, transcriptome, and physical map assembly. Plant Genome. 2016;9. https://doi.org/10.3835/plantgenome2015.07.0062.
Sun H, Wu S, Zhang G, Jiao C, Guo S, Ren Y, et al. Karyotype stability and unbiased fractionation in the paleo-allotetraploid cucurbita genomes. Mol Plant. 2017;10:1293–306.
Article
CAS
PubMed
Google Scholar
VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, et al. The genome of black raspberry (Rubus occidentalis). Plant J. 2016;87:535–47.
Article
CAS
PubMed
Google Scholar
Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, et al. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet. 2016;48:657–66.
Article
CAS
PubMed
Google Scholar
Jacquemin J, Bhatia D, Singh K, Wing RA. The International Oryza Map Alignment Project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr Opin Plant Biol. 2013;16:147–56.
Article
CAS
PubMed
Google Scholar
Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009;19:1068–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, et al. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J. 2013;76:718–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Oeveren J, de Ruiter M, Jesse T, van der Poel H, Tang J, Yalcin F, et al. Sequence-based physical mapping of complex genomes by whole genome profiling. Genome Res. 2011;21:618–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mayer KF, Taudien S, Martis M, Simkova H, Suchankova P, Gundlach H, et al. Gene content and virtual gene order of barley chromosome 1H. Plant Physiol. 2009;151:496–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788.
Article
CAS
Google Scholar
Chapman JA, Mascher M, Buluc AN, Barry K, Georganas E, Session A, et al. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol. 2015;16:26.
Article
PubMed
PubMed Central
Google Scholar
International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491:711–6.
Article
CAS
Google Scholar
Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357:93–7.
Article
CAS
PubMed
Google Scholar
Lu F-H, McKenzie N, Kettleborough G, Heavens D, Clark MD, Bevan MW. Independent assessment and improvement of wheat genome assemblies using Fosill jumping libraries. Gigascience. 2018;7. https://doi.org/10.1093/gigascience/giy053.
Aird D, Ross MG, Chen W-S, Danielsson M, Fennell T, Russ C, et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 2011;12:R18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, et al. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 2017;27:885–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol. 2012;30:693–700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, et al. Improved maize reference genome with single-molecule technologies. Nature. 2017;546:524–7.
CAS
PubMed
PubMed Central
Google Scholar
Schmidt MH-W, Vogel A, Denton AK, Istace B, Wormit A, van de Geest H, et al. De novo assembly of a new Solanum pennellii accession using nanopore sequencing. Plant Cell. 2017;29:2336–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience. 2017;6:1–7.
PubMed
PubMed Central
Google Scholar
Zimin AV, Puiu D, Luo M-C, Zhu T, Koren S, Marçais G, et al. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 2017;27:787–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fierst JL. Using linkage maps to correct and scaffold de novo genome assemblies: methods, challenges, and computational tools. Front Genet. 2015;6:220.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mascher M, Stein N. Genetic anchoring of whole-genome shotgun assemblies. Front Genet. 2014;5:208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33:531–7.
Article
CAS
PubMed
Google Scholar
Aliyeva-Schnorr L, Beier S, Karafiátová M, Schmutzer T, Scholz U, Doležel J, et al. Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H. Plant J. 2015;84:385–94.
Article
CAS
PubMed
Google Scholar
Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, et al. High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics. 2003;82:378–89.
Article
CAS
PubMed
Google Scholar
Hukriede NA, Joly L, Tsang M, Miles J, Tellis P, Epstein JA, et al. Radiation hybrid mapping of the zebrafish genome. Proc Natl Acad Sci U S A. 1999;96:9745–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lam ET, Hastie A, Lin C, Ehrlich D, Das SK, Austin MD, et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat Biotechnol. 2012;30:771–6.
Article
CAS
PubMed
Google Scholar
Hatakeyama M, Aluri S, Balachadran MT, Sivarajan SR, Patrignani A, Grüter S, et al. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Res. 2017. https://doi.org/10.1093/dnares/dsx036.
Stankova H, Hastie AR, Chan S, Vrana J, Tulpova Z, Kubalakova M, et al. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnol J. 2016;14:1523–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng GX, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM, et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol. 2016;34:303–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yeo S, Coombe L, Chu J, Warren RL, Birol I. ARCS: assembly roundup by chromium scaffolding. bioRxiv. 2017:100750. https://doi.org/10.1101/100750.
Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct determination of diploid genome sequences. Genome Res. 2017;27:757–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hulse-Kemp AM, Maheshwari S, Stoffel K, Hill TA, Jaffe D, Williams SR, et al. Reference quality assembly of the 3.5-Gb genome of Capsicum annuum from a single linked-read library. Hortic Res. 2018;5:4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol. 2013;31:1119–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaplan N, Dekker J. High-throughput genome scaffolding from in vivo DNA interaction frequency. Nat Biotechnol. 2013;31:1143–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grob S, Schmid MW, Grossniklaus U. Hi-C analysis in Arabidopsis identifies the KNOT, a structure with similarities to the flamenco locus of Drosophila. Mol Cell. 2014;55:678–93.
Article
CAS
PubMed
Google Scholar
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ariyadasa R, Mascher M, Nussbaumer T, Schulte D, Frenkel Z, Poursarebani N, et al. A sequence-ready physical map of barley anchored genetically by two million single-nucleotide polymorphisms. Plant Physiol. 2014;164:412–23.
Article
CAS
PubMed
Google Scholar
Lightfoot D, Jarvis DE, Ramaraj T, Lee R, Jellen E, Maughan P. Single-molecule sequencing and Hi-C-based proximity-guided assembly of amaranth (Amaranthus hypochondriacus) chromosomes provide insights into genome evolution. BMC Biol. 2017;15:74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Putnam NH, O’Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26:342–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiao W-B, Accinelli GG, Hartwig B, Kiefer C, Baker D, Severing E, et al. Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. Genome Res. 2017;27:778–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moll KM, Zhou P, Ramaraj T, Fajardo D, Devitt NP, Sadowsky MJ, et al. Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula. BMC Genomics. 2017;18:578.
Article
PubMed
PubMed Central
Google Scholar
Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C, et al. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat Commun. 2017;8:14953.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thind AK, Wicker T, Šimková H, Fossati D, Moullet O, Brabant C, et al. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol. 2017;35:793–6.
Article
CAS
PubMed
Google Scholar
Ford-Lloyd BV, Schmidt M, Armstrong SJ, Barazani O, Engels J, Hadas R, et al. Crop wild relatives—undervalued, underutilized and under threat? Bioscience. 2011;61:559–65.
Article
Google Scholar
Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–51.
Article
CAS
PubMed
Google Scholar
Chia J-M, Song C, Bradbury PJ, Costich D, De Leon N, Doebley J, et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet. 2012;44:803–7.
Article
CAS
PubMed
Google Scholar
Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet. 2010;42:961–7.
Article
CAS
PubMed
Google Scholar
Huang X, Zhao Y, Li C, Wang A, Zhao Q, Li W, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet. 2012;44:32–9.
Article
CAS
Google Scholar
Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R, et al. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol. 2017;18:161.
Article
PubMed
PubMed Central
Google Scholar
Hardigan MA, Laimbeer FPE, Newton L, Crisovan E, Hamilton JP, Vaillancourt B, et al. Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc Natl Acad Sci U S A. 2017;114:E9999–E10008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci U S A. 2014;111:5135–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yano K, Yamamoto E, Aya K, Takeuchi H, Lo P-C, Hu L, et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet. 2016;48:927–34.
Article
CAS
PubMed
Google Scholar
Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475:493–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schiffels S, Durbin R. Inferring human population size and separation history from multiple genome sequences. Nat Genet. 2014;46:919–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nadachowska-Brzyska K, Burri R, Smeds L, Ellegren H. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol Ecol. 2016;25:1058–72.
Article
PubMed
PubMed Central
Google Scholar
Wang L, Beissinger TM, Lorant A, Ross-Ibarra C, Ross-Ibarra J, Hufford MB. The interplay of demography and selection during maize domestication and expansion. Genome Biol. 2017;18:215.
Article
PubMed
PubMed Central
Google Scholar
Zhou Y, Massonnet M, Sanjak JS, Cantu D, Gaut BS. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proc Natl Acad Sci U S A. 2017;114:11715–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meyer RS, Choi JY, Sanches M, Plessis A, Flowers JM, Amas J, et al. Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat Genet. 2016;48:1083–8.
Article
CAS
PubMed
Google Scholar
Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461:272–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jupe F, Witek K, Verweij W, Śliwka J, Pritchard L, Etherington GJ, et al. Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J. 2013;76:530–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jordan KW, Wang S, Lun Y, Gardiner LJ, MacLachlan R, Hucl P, et al. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol. 2015;16:48.
Article
PubMed
PubMed Central
Google Scholar
Krasileva KV, Vasquez-Gross HA, Howell T, Bailey P, Paraiso F, Clissold L, et al. Uncovering hidden variation in polyploid wheat. Proc Natl Acad Sci U S A. 2017;114:E913–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, et al. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J. 2013;76:494–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Russell J, Mascher M, Dawson IK, Kyriakidis S, Calixto C, Freund F, et al. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet. 2016;48:1024–30.
Article
CAS
PubMed
Google Scholar
Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol. 2016;34:652–5.
Article
CAS
PubMed
Google Scholar
Arora S, Steuernagel B, Chandramohan S, Long Y, Matny O, Johnson R, et al. Resistance gene discovery and cloning by sequence capture and association genetics. bioRxiv. 2018:248146. https://doi.org/10.1101/248146.
Witek K, Jupe F, Witek AI, Baker D, Clark MD, Jones JD. Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nat Biotechnol. 2016;34:656–60.
Article
CAS
PubMed
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.
Article
CAS
PubMed
Google Scholar
Nabholz B, Sarah G, Sabot F, Ruiz M, Adam H, Nidelet S, et al. Transcriptome population genomics reveals severe bottleneck and domestication cost in the African rice (Oryza glaberrima). Mol Ecol. 2014;23:2210–27.
Article
CAS
PubMed
Google Scholar
Lemmon ZH, Bukowski R, Sun Q, Doebley JF. The role of cis regulatory evolution in maize domestication. PLoS Genet. 2014;10:e1004745.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 2011;12:499–510.
Article
CAS
PubMed
Google Scholar
Davey JW, Blaxter ML. RADSeq: next-generation population genetics. Brief Funct Genomics. 2010;9:416–23.
Article
CAS
PubMed
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One. 2013;8:e58700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R. Ascertainment bias in studies of human genome-wide polymorphism. Genome Res. 2005;15:1496–502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gautier M, Gharbi K, Cezard T, Foucaud J, Kerdelhué C, Pudlo P, et al. The effect of RAD allele dropout on the estimation of genetic variation within and between populations. Mol Ecol. 2013;22:3165–78.
Article
CAS
PubMed
Google Scholar
Arnold B, Corbett-Detig RB, Hartl D, Bomblies K. RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol Ecol. 2013;22:3179–90.
Article
CAS
PubMed
Google Scholar
Manching H, Sengupta S, Hopper KR, Polson SW, Ji Y, Wisser RJ. Phased genotyping-by-sequencing enhances analysis of genetic diversity and reveals divergent copy number variants in maize. G3 (Bethesda). 2017;7:2161–70.
Article
Google Scholar
Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, et al. Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet. 2013;9:e1003215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22:3124–40.
Article
PubMed
PubMed Central
Google Scholar
Shafer ABA, Peart CR, Tusso S, Maayan I, Brelsford A, Wheat CW, Wolf JBW. Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol Evol. 2017;8:907–17.
Article
Google Scholar
Wendler N, Mascher M, Himmelbach A, Bini F, Kumlehn J, Stein N. A high-density, sequence-enriched genetic map of Hordeum bulbosum and its collinearity to H. vulgare. Plant Genome. 2017;10. https://doi.org/10.3835/plantgenome2017.06.0049.
Kantarski T, Larson S, Zhang X, DeHaan L, Borevitz J, Anderson J, et al. Development of the first consensus genetic map of intermediate wheatgrass (Thinopyrum intermedium) using genotyping-by-sequencing. Theor Appl Genet. 2017;130:137–50.
Article
CAS
PubMed
Google Scholar
Zhang Y, Zhang J, Huang L, Gao A, Zhang J, Yang X, et al. A high-density genetic map for P genome of Agropyron Gaertn. based on specific-locus amplified fragment sequencing (SLAF-seq). Planta. 2015;242:1335–47.
Article
CAS
PubMed
Google Scholar
Bao Z, Meng F, Strickler SR, Dunham DM, Munkvold KR, Martin GB. Identification of a candidate gene in Solanum habrochaites for resistance to a race 1 strain of Pseudomonas syringae pv. tomato. Plant Genome. 2015;8. https://doi.org/10.3835/plantgenome2015.02.0006.
Wendler N, Mascher M, Himmelbach A, Johnston P, Pickering R, Stein N. Bulbosum to go: a toolbox to utilize Hordeum vulgare/bulbosum introgressions for breeding and beyond. Mol Plant. 2015;8:1507–19.
Article
CAS
PubMed
Google Scholar
Celik I, Gurbuz N, Uncu AT, Frary A, Doganlar S. Genome-wide SNP discovery and QTL mapping for fruit quality traits in inbred backcross lines (IBLs) of Solanum pimpinellifolium using genotyping by sequencing. BMC Genomics. 2017;18:1. https://doi.org/10.1186/s12864-016-3406-7.
Article
PubMed
PubMed Central
Google Scholar
Bajaj D, Das S, Badoni S, Kumar V, Singh M, Bansal KC, et al. Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea. Sci Rep. 2015;5:12468.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stetter MG, Müller T, Schmid KJ. Genomic and phenotypic evidence for an incomplete domestication of South American grain amaranth (Amaranthus caudatus). Mol Ecol. 2017;26:871–86.
Article
CAS
PubMed
Google Scholar
Bredeson JV, Lyons JB, Prochnik SE, Wu GA, Ha CM, Edsinger-Gonzales E, et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol. 2016;34:562–70.
Article
CAS
PubMed
Google Scholar
Mondon A, Owens GL, Poverene M, Cantamutto M, Rieseberg LH. Gene flow in Argentinian sunflowers as revealed by genotyping by sequencing data. Evol Appl. 2017;11:193–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baute GJ, Owens GL, Bock DG, Rieseberg LH. Genome-wide genotyping-by-sequencing data provide a high-resolution view of wild Helianthus diversity, genetic structure, and interspecies gene flow. Am J Bot. 2016;103:2170–7.
Article
PubMed
Google Scholar
Ariani A, Berny Mier y Teran JC, Gepts P. Spatial and temporal scales of range expansion in wild Phaseolus vulgaris. Mol Biol Evol. 2018;35:119–31.
Article
PubMed
Google Scholar
Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, et al. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 2013;14:R55.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Hintum TJ, Visser DL. Duplication within and between germplasm collections. Genet Resour Crop Evol. 1995;42:135–45.
Article
Google Scholar
Jakob SS, Rodder D, Engler JO, Shaaf S, Ozkan H, Blattner FR, et al. Evolutionary history of wild barley (Hordeum vulgare subsp. spontaneum) analyzed using multilocus sequence data and paleodistribution modeling. Genome Biol Evol. 2014;6:685–702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parzies H, Spoor W, Ennos R. Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity. 2000;84:476–86.
Article
CAS
PubMed
Google Scholar
Odong T, Jansen J, Van Eeuwijk F, van Hintum TJ. Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theor Appl Genet. 2013;126:289–305.
Article
CAS
PubMed
Google Scholar
3,000 Rice Genomes project. The 3,000 Rice Genomes project. GigaScience. 2014;3:7.
Article
CAS
Google Scholar
Navarro JAR, Willcox M, Burgueño J, Romay C, Swarts K, Trachsel S, et al. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat Genet. 2017;49:476–80.
Article
CAS
Google Scholar
Seeds of Discovery. http://www.cimmyt.org/seeds-of-discovery/. Accessed 10 Aug 2018.
IPK Gatersleben BRIDGE Web Portal. http://bridge.ipk-gatersleben.de. Accessed 10 Aug 2018.
Bean Adapt https://www.facebook.com/BeanAdapt/. Accessed 10 Aug 2018.
G2P-SOL Linking genetic resources, genomes and phenotypes of Solanaceous crops. http://www.g2p-sol.eu/. Accessed 10 Aug 2018.
Li JY, Wang J, Zeigler RS. The 3,000 rice genomes project: new opportunities and challenges for future rice research. Gigascience. 2014;3:8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Longin CFH, Reif JC. Redesigning the exploitation of wheat genetic resources. Trends Plant Sci. 2014;19:631–6.
Article
CAS
PubMed
Google Scholar
Springer NM, Lisch D, Li Q. Creating order from chaos: epigenome dynamics in plants with complex genomes. Plant Cell. 2016;28:314–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Springer NM, Schmitz RJ. Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet. 2017;18:563–75.
Article
CAS
PubMed
Google Scholar
Daccord N, Celton J-M, Linsmith G, Becker C, Choisne N, Schijlen E, et al. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nat Genet. 2017;49:1099–106.
Article
CAS
PubMed
Google Scholar
Guo X, Han F. Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. Plant Cell. 2014;26:4311–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song Q, Zhang T, Stelly DM, Chen ZJ. Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biol. 2017;18:99.
Article
PubMed
PubMed Central
Google Scholar
Chen ZJ, Pikaard CS. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 1997;11:2124–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the Neandertal genome. Science. 2010;328:710–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larson G, Albarella U, Dobney K, Rowley-Conwy P, Schibler J, Tresset A, et al. Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proc Natl Acad Sci U S A. 2007;104:15276–81.
Article
PubMed
PubMed Central
Google Scholar
Larson G, Karlsson EK, Perri A, Webster MT, Ho SY, Peters J, et al. Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proc Natl Acad Sci U S A. 2012;109:8878–83.
Article
PubMed
PubMed Central
Google Scholar
Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S. Ancient DNA. Nat Rev Genet. 2001;2:353–9.
Article
CAS
PubMed
Google Scholar
Schlumbaum A, Tensen M, Jaenicke-Després V. Ancient plant DNA in archaeobotany. Veg Hist Archaeobotany. 2008;17:233–44.
Article
Google Scholar
da Fonseca RR, Smith BD, Wales N, Cappellini E, Skoglund P, Fumagalli M, et al. The origin and evolution of maize in the Southwestern United States. Nat Plants. 2015;1:14003.
Article
PubMed
Google Scholar
Mascher M, Schuenemann VJ, Davidovich U, Marom N, Himmelbach A, Hubner S, et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat Genet. 2016;48:1089–93.
Article
CAS
PubMed
Google Scholar
Swarts K, Gutaker RM, Benz B, Blake M, Bukowski R, Holland J, et al. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science. 2017;357:512–5.
Article
CAS
PubMed
Google Scholar
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.
Article
CAS
PubMed
Google Scholar
Jung C, Capistrano-Gossmann G, Braatz J, Sashidhar N, Melzer S. Recent developments in genome editing and applications in plant breeding. Plant Breed. 2018;137:1–9.
Article
Google Scholar
Soyk S, Lemmon ZH, Oved M, Fisher J, Liberatore KL, Park SJ, et al. Bypassing negative epistasis on yield in tomato imposed by a domestication gene. Cell. 2017;169:1142–55.
Article
CAS
PubMed
Google Scholar
Braatz J, Harloff H-J, Mascher M, Stein N, Himmelbach A, Jung C. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol. 2017;174:935–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rajani S, Sundaresan V. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr Biol. 2001;11:1914–22.
Article
CAS
PubMed
Google Scholar
Cox TS, Glover JD, Van Tassel DL, Cox CM, DeHaan LR. Prospects for developing perennial grain crops. Bioscience. 2006;56:649–59.
Article
Google Scholar
Hayes R, Newell M, DeHaan L, Murphy K, Crane S, Norton M, et al. Perennial cereal crops: an initial evaluation of wheat derivatives. Field Crop Res. 2012;133:68–89.
Article
Google Scholar
Zhang X, Sallam A, Gao L, Kantarski T, Poland J, DeHaan LR, et al. Establishment and optimization of genomic selection to accelerate the domestication and improvement of intermediate wheatgrass. Plant Genome. 2016;9. https://doi.org/10.3835/plantgenome2015.07.0059.
Brouwer P, Bräutigam A, Külahoglu C, Tazelaar AO, Kurz S, Nierop KG, et al. Azolla domestication towards a biobased economy? New Phytol. 2014;202:1069–82.
Article
CAS
PubMed
Google Scholar
Robson P, Jensen E, Hawkins S, White SR, Kenobi K, Clifton-Brown J, et al. Accelerating the domestication of a bioenergy crop: identifying and modelling morphological targets for sustainable yield increase in Miscanthus. J Exp Bot. 2013;64:4143–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng JJ, Stomp AM. Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean Soil Air Water. 2009;37:17–26.
Article
CAS
Google Scholar
Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng X, Gogarten SM, Lawrence M, Stilp A, Conomos MP, Weir BS, et al. SeqArray—a storage-efficient high-performance data format for WGS variant calls. Bioinformatics. 2017;33:2251–7.
Article
PubMed
PubMed Central
Google Scholar
Browning BL, Browning SR. Genotype imputation with millions of reference samples. Am J Hum Genet. 2016;98:116–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delaneau O, Zagury J-F, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods. 2013;10:5–6.
Article
CAS
PubMed
Google Scholar
Swarts K, Li H, Romero Navarro JA, An D, Romay MC, Hearne S, et al. Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome. 2014;7. https://doi.org/10.3835/plantgenome2014.05.0023.
Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature. 2018;557:43–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fumagalli M, Vieira FG, Linderoth T, Nielsen R. ngsTools: methods for population genetics analyses from next-generation sequencing data. Bioinformatics. 2014;30:1486–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:356.
Article
PubMed
PubMed Central
Google Scholar
Cavalli-Sforza LL, Menozzi P, Piazza A. The history and geography of human genes. 2nd ed. Princeton: Princeton University Press; 1994.
Google Scholar
Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
CAS
PubMed
PubMed Central
Google Scholar
Abraham G, Inouye M. Fast principal component analysis of large-scale genome-wide data. PLoS One. 2014;9:e93766.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galinsky KJ, Bhatia G, Loh P-R, Georgiev S, Mukherjee S, Patterson NJ, et al. Fast principal-component analysis reveals convergent evolution of ADH1B in Europe and East Asia. Am J Hum Genet. 2016;98:456–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raj A, Stephens M, Pritchard JK. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics. 2014;197:573–89.
Article
PubMed
PubMed Central
Google Scholar
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frichot E, Mathieu F, Trouillon T, Bouchard G, François O. Fast and efficient estimation of individual ancestry coefficients. Genetics. 2014;196:973–83.
Article
PubMed
PubMed Central
Google Scholar
Soraggi S, Wiuf C, Albrechtsen A. Powerful inference with the D-statistic on low-coverage whole genome data. G3 (Bethesda). 2018;8:551–66.
Article
Google Scholar
Bhatia G, Patterson N, Sankararaman S, Price AL. Estimating and interpreting FST: the impact of rare variants. Genome Res. 2013;23:1514–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 2009;5:e1000695.
Article
CAS
PubMed
PubMed Central
Google Scholar
Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. Robust demographic inference from genomic and SNP data. PLoS Genet. 2013;9:e1003905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, Yu Y, Haberer G, Marri PR, Fan C, Goicoechea JL, et al. The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nat Genet. 2014;46:982–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice. 2013;6:4.
Article
PubMed
PubMed Central
Google Scholar
Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature. 2014;505:546–9.
Article
CAS
PubMed
Google Scholar
Wang W, Feng B, Xiao J, Xia Z, Zhou X, Li P, et al. Cassava genome from a wild ancestor to cultivated varieties. Nat Commun. 2014;5:5110.
Article
CAS
PubMed
Google Scholar
Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol. 2013;31:240–6.
Article
CAS
PubMed
Google Scholar
Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, et al. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet. 2014;46:567–72.
Article
CAS
PubMed
Google Scholar
Muñoz-Amatriaín M, Mirebrahim H, Xu P, Wanamaker SI, Luo M, Alhakami H, et al. Genome resources for climate-resilient cowpea, an essential crop for food security. Plant J. 2016;89:1042–54.
Article
CAS
Google Scholar
Jayakodi M, Choi B-S, Lee S-C, Kim N-H, Park JY, Jang W, et al. Ginseng Genome Database: an open-access platform for genomics of Panax ginseng. BMC Plant Biol. 2018;18:62.
Article
PubMed
PubMed Central
Google Scholar
Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol. 2011;30:105–11.
Article
CAS
PubMed
Google Scholar
Avena Genome. The Oat Genome project. http://avenagenome.org. Accessed 9 Aug 2018.
The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature. 2011;475:189–95.
Article
CAS
Google Scholar
Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet. 2016;48:1225–32.
Article
CAS
PubMed
Google Scholar
Bauer E, Schmutzer T, Barilar I, Mascher M, Gundlach H, Martis MM, et al. Towards a whole-genome sequence for rye (Secale cereale L.). Plant J. 2017;89:853–69.
Article
CAS
PubMed
Google Scholar
McCormic RF, Truong SK, Sreedasyam A, Jenkins J, Shu S, Sims D, et al. The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 2018;93:338–54.
Article
CAS
Google Scholar
Riaño-Pachón DM, Mattiello L. Draft genome sequencing of the sugarcane hybrid SP80-3280. F1000Research. 2017;6:861.
Article
PubMed
PubMed Central
Google Scholar
Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature. 2017;546:148–52.
Article
CAS
PubMed
Google Scholar
The Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485:635–41.
Article
CAS
Google Scholar
Hazzouri KM, Flowers JM, Visser HJ, Khierallah HSM, Rosas U, Pham GM, et al. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat Commun. 2015;6:8824.
Article
CAS
PubMed
Google Scholar
Xu J, Yuan Y, Xu Y, Zhang G, Guo X, Wu F, et al. Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol. 2014;14:83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, et al. Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun. 2013;4:2320.
Article
PubMed
Google Scholar
Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol. 2015;33:408–14.
Article
CAS
PubMed
Google Scholar
Causse M, Desplat N, Pascual L, Le Paslier M-C, Sauvage C, Bauchet G, et al. Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics. 2013;14:791.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen AM, Barker GLA, Wilkinson P, Burridge A, Winfield M, Coghill J, et al. Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol J. 2013;11:279–95.
Article
CAS
PubMed
Google Scholar
Salmon A, Udall JA, Jeddeloh JA, Wendel J. Targeted capture of homoeologous coding and noncoding sequence in polyploid cotton. G3 (Bethesda). 2012;2:921–30.
Article
CAS
Google Scholar
Neves LG, Davis JM, Barbazuk WB, Matias K. Whole-exome targeted sequencing of the uncharacterized pine genome. Plant J. 2013;75:146–56.
Article
CAS
PubMed
Google Scholar
Clarke WE, Parkin IA, Gajardo HA, Gerhardt DJ, Higgins E, Sidebottom C, et al. Genomic DNA enrichment using sequence capture microarrays: a novel approach to discover sequence nucleotide polymorphisms (SNP) in Brassica napus L. PLoS One. 2013;8:e81992.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolon Y-T, Haun WJ, Xu WW, Grant D, Stacey MG, Nelson RT, et al. Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Physiol. 2011;156:240–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song J, Yang X, Resende MFR, Neves LG, Todd J, Zhang J, et al. Natural allelic variations in highly polyploidy saccharum complex. Front Plant Sci. 2016;7:804.
PubMed
PubMed Central
Google Scholar
Rong J, Lammers Y, Strasburg JL, Schidlo NS, Ariyurek Y, de Jong TJ, et al. New insights into domestication of carrot from root transcriptome analyses. BMC Genomics. 2014;15:895.
Article
PubMed
PubMed Central
Google Scholar
Bellucci E, Bitocchi E, Ferrarini A, Benazzo A, Biagetti E, Klie S, et al. Decreased nucleotide and expression diversity and modified coexpression patterns characterize domestication in the common bean. Plant Cell. 2014;26:1901–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao Y, Hu G, Flagel LE, Salmon A, Bezanilla M, et al. Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium). Proc Natl Acad Sci U S A. 2011;108:21152–7.
Article
PubMed
PubMed Central
Google Scholar
Verma S, Gupta S, Bandhiwal N, Kumar T, Bharadwaj C, Bhatia S. High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using Genotyping-by-Sequencing (GBS). Sci Rep. 2015;5:17512.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong H, Shi A, Mou B, Qin J, Motes D, Lu W, et al. Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp). PLoS One. 2016;11:e0160941.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y-F, Poland JA, Wight CP, Jackson EW, Tinker NA. Using Genotyping-By-Sequencing (GBS) for genomic discovery in cultivated oat. PLoS One. 2014;9:e102448.
Article
PubMed
PubMed Central
Google Scholar
Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, Lorenz A. Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genomics. 2014;15:740.
Article
PubMed
PubMed Central
Google Scholar
Nimmakayala P, Levi A, Abburi L, Abburi VL, Tomason YR, Saminathan T, et al. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genomics. 2014;15:767.
Article
PubMed
PubMed Central
Google Scholar