The Food and Agriculture Organization of the United Nations. 2017. http://www.fao.org/faostat/en/. Accessed 12 Dec 2017.
Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González RH, Oliveira RD, IWGS C, KFX M, Paux E, Choulet F. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 2018. https://doi.org/10.1101/363192.
Jordan KW, Wang S, Lun Y, Gardiner LJ, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest KL, Consortium I, et al. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol. 2015;16:48.
Article
PubMed
PubMed Central
Google Scholar
Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357:93–7.
Article
PubMed
CAS
Google Scholar
Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Martin W. Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet. 2002;3:429–41.
Article
PubMed
CAS
Google Scholar
Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Deal KR, et al. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics. 2010;11:702.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D'Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, et al. Analysis of the breadwheat genome using whole-genome shotgun sequencing. Nature. 2012;491:705–10.
Article
PubMed
PubMed Central
CAS
Google Scholar
The International Wheat Genome Sequencing Consortium. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788.
Article
CAS
Google Scholar
Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y, et al. Draft genome of the wheat A-genome progenitor Triticum urartu. Nature. 2013;496:87–90.
Article
PubMed
CAS
Google Scholar
Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature. 2013;496:91–5.
Article
PubMed
CAS
Google Scholar
Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, et al. A physical map of the 1-gigabase bread wheat chromosome 3B. Science. 2008;322:101–4.
Article
PubMed
CAS
Google Scholar
Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, et al. Structural and functional partitioning of bread wheat chromosome 3B. Science. 2014;345:1249721.
Article
PubMed
CAS
Google Scholar
Chapman JA, Mascher M, Buluc A, Barry K, Georganas E, Session A, Strnadova V, Jenkins J, Sehgal S, Oliker L, et al. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol. 2015;16:26.
Article
PubMed
PubMed Central
Google Scholar
Clavijo BJ, Venturini L, Schudoma C, Accinelli GG, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, et al. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Res. 2017;27:885–96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zimin AV, Puiu D, Hall R, Kingan S, Clavijo BJ, Salzberg SL. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience. 2017;6:1–7.
PubMed
PubMed Central
Google Scholar
Hirsch CN, Hirsch CD, Brohammer AB, Bowman MJ, Soifer I, Barad O, Shem-Tov D, Baruch K, Lu F, Hernandez AG, et al. Draft assembly of elite inbred line PH207 provides insights into genomic and transcriptome diversity in maize. Plant Cell. 2016;28:2700–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X, Chin CS, et al. Improved maize reference genome with single-molecule technologies. Nature. 2017;546:524–7.
PubMed
CAS
PubMed Central
Google Scholar
Schmidt MHW, Vogel A, Denton AK, Istace B, Wormit A, van de Geest H, Bolger ME, Alseekh S, Mass J, Pfaff C, et al. De novo assembly of a new Solanum pennellii accession using nanopore sequencing. Plant Cell. 2017;29:2336–48.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Berkum NL, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A, Mirny LA, Dekker J, Lander ES. Hi-C: a method to study the three-dimensional architecture of genomes. J Vis Exp. 2010;39:1869.
Google Scholar
Putnam NH, O'Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, Troll CJ, Fields A, Hartley PD, Sugnet CW, et al. Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 2016;26:342–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–33.
Article
PubMed
CAS
Google Scholar
Jarvis DE, Ho YS, Lightfoot DJ, Schmockel SM, Li B, Borm TJ, Ohyanagi H, Mineta K, Michell CT, Saber N, et al. The genome of Chenopodium quinoa. Nature. 2017;542:307–12.
Article
PubMed
CAS
Google Scholar
Moll KM, Zhou P, Ramaraj T, Fajardo D, Devitt NP, Sadowsky MJ, Stupar RM, Tiffin P, Miller JR, Young ND, et al. Strategies for optimizing BioNano and dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula. BMC Genomics. 2017;18:578.
Article
PubMed
PubMed Central
Google Scholar
The International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding through a fully annotated and anchored reference genome sequence. Science. 2018; in press.
Endo TR, Gill BS. The deletion stocks of common wheat. J Hered. 1996;87:295–307.
Article
CAS
Google Scholar
Sears ER, Sears LMS. The telocentric chromosomes of common wheat. In: Ramanujam S, editor. Proceedings of the 5th international wheat genetics symposium, New Delhi: Indian Agricultural Research Institute; 1978. p. 389–407.
Alkan C, Coe BP, Eichler EE. Genome structural variation discovery and genotyping. Nat Rev Genet. 2011;12:363–76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu M, Stiller J, Holusova K, Vrana J, Liu D, Dolezel J, Liu C. Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat. Sci Rep. 2016;6:36398.
Article
PubMed
PubMed Central
CAS
Google Scholar
Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan CK, Visendi P, Lai K, Dolezel J, Batley J, Edwards D. The pangenome of hexaploid bread wheat. Plant J. 2017;90:1007–13.
Article
PubMed
CAS
Google Scholar
Moullet O, Schori A. Maintaining the efficiency of MAS method in cereals while reducing the costs. J Plant Breed Genet. 2014;2:97–100.
Google Scholar
Thind AK, Wicker T, Simkova H, Fossati D, Moullet O, Brabant C, Vrana J, Dolezel J, Krattinger SG. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol. 2017;35:793–6.
Article
PubMed
CAS
Google Scholar
Munoz-Amatriain M, Eichten SR, Wicker T, Richmond TA, Mascher M, Steuernagel B, Scholz U, Ariyadasa R, Spannagl M, Nussbaumer T, et al. Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome. Genome Biol. 2013;14:R58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wicker T, Buchmann JP, Keller B. Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res. 2010;20:1229–37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wicker T, Yu YS, Haberer G, Mayer KFX, Marri PR, Steve RW, Chen MS, Zuccolo A, Panaud O, Wing RA, Roffler S. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. Nat Commun. 2016;7:12790.
Article
PubMed
PubMed Central
Google Scholar
Robberecht CVT, Zamani Esteki M, Nowakowska BA, Vermeesch JR. Non-allelic homologous recombination between retrotransposable elements is a driver of de novo unbalanced translocations. Genome Res. 2013;23:411–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cai X, Xu SS. Meiosis-driven genome variation in plants. Curr Genomics. 2007;8:151–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Storici F, Snipe JR, Chan GK, Gordenin DA, Resnick MA. Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing. Mol Cell Biol. 2006;6:7645–57.
Article
CAS
Google Scholar
Yang Y, Sterling J, Storici F, Resnick MA, Gordenin DA. Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet. 2008;4:e1000264.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fishman-Lobell JRN, Haber JE. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol. 1992;12:1292–303.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shevelev IV, Hubscher U. The 3’-5’ exonucleases. Nat Rev Mol Cell Biol. 2002;3:364–75.
Article
PubMed
CAS
Google Scholar
Pfeiffer P, Goedecke W, Obe G. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. 2000;15:289–302.
Article
PubMed
CAS
Google Scholar
Leitch AR, Leitch IJ. Genomic plasticity and the diversity of polyploid plants. Science. 2008;320:481–3.
Article
PubMed
CAS
Google Scholar
Dyck PL, Kerber ER. Inheritance in hexaploid wheat of adult-plant leaf rust resistance derived from Aegilops squarrosa. Can J Genet Cytol. 1970;2:175–80.
Article
Google Scholar
Wang J, Luo MC, Chen ZX, You FM, Wei YM, Zheng YL, Dvorak J. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol. 2013;198:925–37.
Article
PubMed
CAS
Google Scholar
Arora S, Singh N, Kaur S, Bains NS, Uauy C, Poland J, Chhuneja P. Genome-wide association study of grain architecture in wild wheat Aegilops tauschii. Front Plant Sci. 2017;8:886.
Article
PubMed
PubMed Central
Google Scholar
Luo MC, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y, et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature. 2017;551:498–502.
PubMed
CAS
PubMed Central
Google Scholar
Genetic Resources Information System for Wheat and Triticale. http://www.wheatpedigree.net/sort/show/118822. Accessed 19 Dec 2017.
Isidore E, Scherrer B, Chalhoub B, Feuillet C, Keller B. Ancient haplotypes resulting from extensive molecular rearrangements in the wheat a genome have been maintained in species of three different ploidy levels. Genome Res. 2005;15:526–36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saxena RK, Edwards D, Varshney RK. Structural variations in plant genomes. Brief Funct Genomics. 2014;13:296–307.
Article
PubMed
PubMed Central
Google Scholar
Mago R, Tabe L, Vautrin S, Simkova H, Kubalakova M, Upadhyaya N, Berges H, Kong X, Breen J, Dolezel J, et al. Major haplotype divergence including multiple germin-like protein genes, at the wheat Sr2 adult plant stem rust resistance locus. BMC Plant Biol. 2014;14:379.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pearce S, Zhu J, Boldizsar A, Vagujfalvi A, Burke A, Garland-Campbell K, Galiba G, Dubcovsky J. Large deletions in the CBF gene cluster at the Fr-B2 locus are associated with reduced frost tolerance in wheat. Theor Appl Genet. 2013;126:2683–97.
Article
PubMed
PubMed Central
Google Scholar
Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JC, et al. Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet. 2012;44:803–7.
Article
PubMed
CAS
Google Scholar
The 3,000 rice genomes project. The 3,000 rice genomes project. Gigascience. 2014;3:7.
Article
CAS
Google Scholar
International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature. 2005;436:793–800.
Article
CAS
Google Scholar
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–6.
Article
PubMed
CAS
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–5.
Article
PubMed
CAS
Google Scholar
Vaughn JN, Bennetzen JL. Natural insertions in rice commonly form tandem duplications indicative of patch-mediated double-strand break induction and repair. Proc Natl Acad Sci U S A. 2014;111:6684–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Buchmann JP, Matsumoto T, Stein N, Keller B, Wicker T. Inter-species sequence comparison of Brachypodium reveals how transposon activity corrodes genome colinearity. Plant J. 2012;71:550–63.
Article
PubMed
CAS
Google Scholar
Woodhouse MR, Schnable JC, Pedersen BS, Lyons E, Lisch D, Subramaniam S, Freeling M. Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homeologs. PLoS Biol. 2010;8:e1000409.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sudupak MA, Bennetzen JL, Hulbert SH. Unequal exchange and meiotic instability of disease-resistance genes in the RP1 region of maize. Genetics. 1993;133:119–25.
PubMed
PubMed Central
CAS
Google Scholar
Ramakrishna W, Emberton J, Ogden M, SanMiguel P, Bennetzen JL. Structural analysis of the maize RP1 complex reveals numerous sites and unexpected mechanisms of local rearrangement. Plant Cell. 2002;14:3213–23.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sandhu D, Gao HY, Cianzio S, Bhattacharyya MK. Deletion of a disease resistance nucleotide-binding-site leucine-rich-repeat-like sequence is associated with the loss of the Phytophthora resistance gene Rps4 in soybean. Genetics. 2004;168:2157–67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hiebert CW, Thomas JB, Somers DJ, McCallum BD, Fox SL. Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor Appl Genet. 2007;115:877–84.
Article
PubMed
CAS
Google Scholar
Tanksley SD, McCouch SR. Seed banks and molecular maps: unlocking genetic potential from the wild. Science. 1997;277:1063–6.
Article
PubMed
CAS
Google Scholar
Mcfadden ES, Sears ER. The artificial synthesis of Triticum-Spelta. Records Genet Soc Amer. 1944;13:26–7.
Google Scholar
Dreisigacker S, Kishii M, Lage J, Warburton M. Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Aus J Agric Res. 2008;59:413–20.
Article
Google Scholar
Molnár-Láng M, Ceoloni C, Doležel J. Alien introgression in wheat: cytogenetics, molecular biology, and genomics. Cham: Springer International Publishing; 2015.
Greenwood TA, Rana BK, Schork NJ. Human haplotype block sizes are negatively correlated with recombination rates. Genome Res. 2004;14:1358–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Denton JF, Lugo-Martinez J, Tucker AE, Schrider DR, Warren WC, Hahn MW. Extensive error in the number of genes inferred from draft genome assemblies. PLoS Comput Biol. 2014;10:e1003998.
Article
PubMed
PubMed Central
Google Scholar
Zapata L, Ding J, Willing EM, Hartwig B, Bezdan D, Jiao WB, Patel V, Velikkakam James G, Koornneef M, Ossowski S, Schneeberger K. Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms. Proc Natl Acad Sci U S A. 2016;113:e4052–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gremme G, Brendel V, Sparks ME, Kurtz S. Engineering a software tool for gene structure prediction in higher organisms. Inform Software Tech. 2005;47:965–78.
Article
Google Scholar
NLR Annotator: https://github.com/steuernb/NLR-Annotator
. Accessed 4 Jan 2018.
MicrobesOnline: http://www.microbesonline.org/fasttree/
. Accessed 21 Feb 2017.
Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sonnhammer EL, Durbin R. A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene. 1995;167:GC1–10.
Article
PubMed
CAS
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.
Article
PubMed
PubMed Central
CAS
Google Scholar
The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463:763–8.
Article
CAS
Google Scholar
CH Campala Lr22a pseudomolecule assembly and annotation. https://www.ebi.ac.uk/ena/data/search?query=PRJEB24957
CH Campala Lr22a pseudomolecule raw data sequencing. https://www.ncbi.nlm.nih.gov/bioproject/477683