Larson G, Piperno DR, Allaby RG, Purugganan MD, Andersson L, Arroyo-Kalin M, et al. Current perspectives and the future of domestication studies. Proc Natl Acad Sci U S A. 2014;111:6139–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gepts P. The contribution of genetic and genomic approaches to plant domestication studies. Curr Opin Plant Biol. 2014;18:51–9.
Article
PubMed
Google Scholar
Kwak M, Toro O, Debouck D, Gepts P. Multiple origins of the determinate growth habit in domesticated common bean (Phaseolus vulgaris L.). Ann Bot. 2012;110:1573–80.
Article
PubMed
PubMed Central
Google Scholar
Ramos-Madrigal J, Smith BD, Moreno-Mayar JV, Gopalakrishnan S, Ross-Ibarra J, Gilbert MT, et al. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr Biol. 2016;26:3195–201.
Article
CAS
PubMed
Google Scholar
Xue S, Bradbury PJ, Casstevens T, Holland JB. Genetic architecture of domestication-related traits in maize. Genetics. 2016;204:99–113.
Article
PubMed
Google Scholar
Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science. 2007;316:1862–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sang T, Ge S. Understanding rice domestication and implications for cultivar improvement. Curr Opin Plant Biol. 2013;16:139–46.
Article
PubMed
Google Scholar
Gornicki P, Zhu H, Wang J, Challa GS, Zhang Z, Gill BS, et al. The chloroplast view of the evolution of polyploid wheat. New Phytol. 2014;204:704–14.
Article
CAS
PubMed
Google Scholar
Meyer RS, Choi JY, Sanches M, Plessis A, Flowers JM, Amas J, et al. Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat Genet. 2016;48:1083–8.
Article
CAS
PubMed
Google Scholar
Lenser T, Theißen G. Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci. 2013;18:704–14.
Article
CAS
PubMed
Google Scholar
Delgado-Salinas A, Bibler R, Lavin M. Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. Syst Bot. 2006;31:779–91.
Article
Google Scholar
Kami J, Becerra Velásquez V, Debouck DG, Gepts P. Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proc Natl Acad Sci U S A. 1995;92:1101–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwak M, Gepts P. Structure of genetic diversity in the two major gene pools of common bean (Phaseolus vulgaris L., Fabaceae). Theor Appl Genet. 2009;118:979–92.
Article
CAS
PubMed
Google Scholar
Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A, Zeuli PS, et al. Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci U S A. 2012;109:E788–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
McClean P, Gepts P, Kami J. Genomics and genetic diversity in common bean. In: Wilson RF, Stalker HT, Brummer EC, editors. Legume crop genomics. Champaign: AOCS Press; 2004. p. 61–82.
Google Scholar
Cortés AJ, Chavarro MC, Blair MW. SNP marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet. 2011;123:827–45.
Article
PubMed
Google Scholar
Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, et al. Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol. 2013;197:300–13.
Article
CAS
PubMed
Google Scholar
Kaplan L, Lynch TF, Smith Jr CE. Early cultivated beans (Phaseolus vulgaris) from an Intermontane Peruvian Valley. Science. 1973;179:76–7.
Article
CAS
PubMed
Google Scholar
Gepts P, Bliss FA. F1 hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated bean germplasm. J Hered. 1985;76:447–50.
Article
Google Scholar
Gepts P. Origin and evolution of common bean: past events and recent trends. Hortic Sci. 1998;33:1124–30.
Google Scholar
Kaplan L, Lynch TF. Phaseolus (Fabaceae) in archaeology: AMS radiocarbon dates and their significance for pre-Colombian agriculture. Econ Bot. 1999;53:261–72.
Article
Google Scholar
Beebe S, Toro O, González AV, Chacón MI, Debouck DG. Wild-weed-crop complexes of common bean (Phaseolus vulgaris L., Fabaceae) in the Andes of Peru and Colombia, and their implications for conservation and breeding. Genet Resour Crop Ev. 1997;44:73–91.
Article
Google Scholar
Payró de la Cruz E, Gepts P, Colunga GarcíaMarín P, Zizumbo-Villareal D. Spatial distribution of genetic diversity in wild populations of Phaseolus vulgaris L. from Guanajuato and Michoacán, México. Genet Res Crop Ev. 2005;52:589–99.
Article
Google Scholar
Zizumbo-Villarreal D, Colunga GarcíaMarín P, Payró de la Cruz E, Delgado-Valerio P, Gepts P. Population structure and evolutionary dynamics of wild-weedy-domesticated complexes of common bean in a Mesoamerican region. Crop Sci. 2005;45:1073–83.
Article
CAS
Google Scholar
Martínez-Castillo J, Zizumbo-Villarreal J, Gepts P, Delgado-Valerio P, Colunga-GarcíaMarín P. Structure and genetic diversity of wild populations of Lima bean (Phaseolus lunatus L.) from the Yucatan peninsula, Mexico. Crop Sci. 2006;46:1071–80.
Article
Google Scholar
Worthington M, Soleri D, Gepts P. Genetic composition and spatial distribution of farmer-managed Phaseolus bean plantings: an example from a village in Oaxaca, Mexico. Crop Sci. 2012;52:1721–35.
Article
Google Scholar
Papa R, Gepts P. Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet. 2003;106:239–50.
Article
CAS
PubMed
Google Scholar
Papa R, Acosta-Gallegos JA, Delgado-Salinas A, Gepts P. A genome-wide analysis of differentiation between wild and domesticated Phaseolus vulgaris from Mesoamerica. Theor Appl Genet. 2005;111:1147–58.
Article
CAS
PubMed
Google Scholar
Hufford MB, Lubinksy P, Pyhäjärvi T, Devengenzo MT, Ellstrand NC, Ross-Ibarra J. The genomic signature of crop-wild introgression in maize. PLoS Genet. 2013;9:e1003477.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485:635–41.
Article
Google Scholar
Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M, Hernández-Oñate M, Minoche AE, Erb I, et al. Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol. 2016;17:32.
Article
PubMed
PubMed Central
Google Scholar
Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet. 2014;46:707–13.
Article
CAS
PubMed
Google Scholar
Smith J, Kronforst MR. Do Heliconius butterfly species exchange mimicry alleles? Biol Lett. 2013;9:20130503.
Article
PubMed
PubMed Central
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.
Article
CAS
PubMed
Google Scholar
Llaca V, Delgado Salinas A, Gepts P. Chloroplast DNA as an evolutionary marker in the Phaseolus vulgaris complex. Theor Appl Genet. 1994;88:646–52.
Article
CAS
PubMed
Google Scholar
Mina-Vargas AM, McKeown PC, Flanagan NS, Debouck DG, Kilian A, Hodkinson TR, et al. Origin of year-long bean (Phaseolus dumosus Macfady, Fabaceae) from reticulated hybridization events between multiple Phaseolus species. Ann Bot. 2016;118:957–69.
Article
Google Scholar
Blanco-Pastor JL, Vargas P, Pfeil BE. Coalescent simulations reveal hybridization and incomplete lineage sorting in Mediterranean Linaria. PLoS One. 2012;7:e39089.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DI, Hefer CA, Kolosova N, Douglas CJ, Cronk QC. Whole plastome sequencing reveals deep plastid divergence and cytonuclear discordance between closely related balsam poplars, Populus balsamifera and P. trichocarpa (Salicaceae). New Phytol. 2014;204:693–703.
Article
PubMed
Google Scholar
Ruhsam M, Rai HS, Mathews S, Ross TG, Graham SW, Raubeson LA, et al. Does complete plastid genome sequencing improve species discrimination and phylogenetic resolution in Araucaria? Mol Ecol Resour. 2015;15:1067–78.
Article
CAS
PubMed
Google Scholar
Montero-Vargas JM, González-González LH, Gálvez-Ponce E, Ramírez-Chávez E, Molina-Torres J, Chagolla A, et al. Metabolic phenotyping for the classification of coffee trees and the exploration of selection markers. Mol Biosyst. 2013;9:693–9.
Article
CAS
PubMed
Google Scholar
Sotelo-Silveira M, Chauvin AL, Marsch-Martínez N, Winkler R, De Folter S. Metabolic fingerprinting of Arabidopsis thaliana accessions. Front Plant Sci. 2015;6:1–13.
Article
Google Scholar
Winkler R. An evolving computational platform for biological mass spectrometry: workflows, statistics and data mining with MASSyPup64. PeerJ. 2015;3:e1401.
Article
PubMed
PubMed Central
Google Scholar
Reddy P, Rendón-Anaya M, Soto del Rio MD, Khandual S. Flavonoids as signaling molecules and regulators of root nodule development. Dyn Soil Dyn Plant. 2007;1:83–94.
Google Scholar
Wells WC, Isom WH, Waines JG. Outcrossing rates of six common bean lines. Crop Sci. 1988;28:177–8.
Article
Google Scholar
Ferreira J, de Souza Carneiro JE, Teixeira AL, de Lanes FF, Cecon PR, Borém A. Gene flow in common bean (Phaseolus vulgaris L.). Euphytica. 2007;153:165–70.
Article
Google Scholar
Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the Neandertal genome. Science. 2010;328:710–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durand EY, Patterson N, Reich D, Slatkin M. Testing for ancient admixture between closely related populations. Mol Biol Evol. 2011;28:2239–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin SH, Davey JW, Jiggins CD. Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Mol Biol Evol. 2015;32:244–57.
Article
CAS
PubMed
Google Scholar
SAGARPA. Estudio de gran visión y factibilidad económica y financiera para el desarrollo de infraestructura de almacenamiento y distribución de granos y oleaginosas para el mediano y largo plazo a nivel nacional. 2014. http://www.sagarpa.gob.mx/agronegocios/Documents/Estudios_promercado/GRANOS.pdf.
Freyre R, Ríos R, Guzmán L, Debouck DG, Gepts P. Ecogeographic distribution of Phaseolus spp. (Fabaceae) in Bolivia. Econ Bot. 1996;50:195–215.
Article
Google Scholar
Xu H, Guan Y. Detecting local haplotype sharing and haplotype association. Genetics. 2014;197:823–38.
Article
PubMed
PubMed Central
Google Scholar
Miedes E, Vanholme R, Boerjan W, Molina A. The role of the secondary cell wall in plant resistance to pathogens. Front Plant Sci. 2014;5:358.
Article
PubMed
PubMed Central
Google Scholar
Hajjar R, Hodgkin T. The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica. 2007;156:1–13.
Article
Google Scholar
Richter M, Diertl KH, Emck P, Peters T, Beck E. Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador. Landscape Online. 2009;12:1–35.
Google Scholar
Luebert F, Weigend M. Phylogenetic insights into Andean plant diversification. Front Ecol Evol. 2014;2:27.
Article
Google Scholar
Mutke J, Jacobs R, Meyers K, Henning T, Weigend M. Diversity patterns of selected Andean plant groups correspond to topography and habitat dynamics, not orogeny. Front Genet. 2014;5:351.
Article
PubMed
PubMed Central
Google Scholar
Debouck DG, Toro O, Paredes OM, Johnson WC, Gepts P. Genetic diversity and ecological distribution of Phaseolus vulgaris in northwestern South America. Econ Bot. 1993;47:408–23.
Article
Google Scholar
Viana DS, Santamaría L, Figuerola J. Migratory birds as global dispersal vectors. Trends Ecol Evol. 2016;31:763–75.
Article
PubMed
Google Scholar
La Sorte FA, Fink D, Hochachka WM, Kelling S. Convergence of broad-scale migration strategies in terrestrial birds. Proc R Soc B. 2016;283:20152588.
Article
PubMed
PubMed Central
Google Scholar
Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A. Biological evidence supports an early and complex emergence of the Isthmus of Panama. Proc Natl Acad Sci U S A. 2015;112:6110–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hain MP, Sigman DM, Haug GH. The biological pump in the past. In: Holland HD, Turekian KK, editors. Treatise on Geochemistry, Edition 2, Chapter: 8.18. Amsterdam, NL: Elsevier; 2014. p. 485–517.
Hungria M, Johnston AW, Phillips DA. Effects of flavonoids released naturally from bean (Phaseolus vulgaris) on nodD-regulated gene transcription in Rhizobium leguminosarum bv. phaseoli. Mol Plant Microbe In. 1992;5:199–203.
Article
CAS
Google Scholar
Peck MC, Fisher RF, Long SR. Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol. 2006;188:5417–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caetano-Anolles G, Crist-Estes DK, Bauer WD. Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacteriol. 1988;170:3164–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng JL, Hassan S, Truong TT, Hocart CH, Laffont C, Frugier F, et al. Flavonoids and auxin transport inhibitors rescue symbiotic Nnodulation in the Medicago truncatula cytokinin perception mutant cre1. Plant Cell. 2015;27:2210–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Gruber MY, Hegedus DD, Lydiate DJ, Gao MJ. Effects of a coumarin derivative, 4-methylumbelliferone, on seed germination and seedling establishment in Arabidopsis. J Chem Ecol. 2011;37:880–90.
Article
CAS
PubMed
Google Scholar
Aguilar OM, Riva O, Peltzer E. Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc Natl Acad Sci U S A. 2004;101:13548–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ribeiro RA, Ormeño-Orrillo E, Dall’Agnol RF, Graham PH, Martinez-Romero E, Hungria M. Novel Rhizobium lineages isolated from root nodules of the common bean (Phaseolus vulgaris L.) in Andean and Mesoamerican areas. Res Microbiol. 2013;164:740–8.
Article
CAS
PubMed
Google Scholar
Servín-Garcidueñas LE, Zayas-Del Moral A, Ormeño-Orrillo E, Rogel MA, Delgado-Salinas A, Sánchez F, et al. Symbiont shift towards Rhizobium nodulation in a group of phylogenetically related Phaseolus species. Mol Phylogenet Evol. 2014;79:1–11.
Article
PubMed
Google Scholar
Debouck DG, Castillo TR, Tohme JM. Observations on little-known Phaseolus germplasm of Ecuador. Plant Genet Resour Newsl. 1989;80:15–21.
Google Scholar
Koinange EMK, Gepts P. Hybrid weakness in wild Phaseolus vulgaris L. J Hered. 1992;83:135–9.
Article
Google Scholar
Harrison RG, Larson EL. Hybridization, introgression, and the nature of species boundaries. J Hered. 2014;105:795–809.
Article
Google Scholar
Hannah MA, Krämer KM, Geffroy V, Kopka J, Blair MW, Erban A, et al. Hybrid weakness controlled by the dosage-dependent lethal (DL) gene system in common bean (Phaseolus vulgaris) is caused by a shoot-derived inhibitory signal leading to salicylic acid-associated root death. New Phytol. 2007;176:537–49.
Article
CAS
PubMed
Google Scholar
Gepts P, Papa R. Evolution during domestication, Encyclopedia of Life Sciences. London: Macmillan Publishers, Nature Publishing Group; 2002.
Google Scholar
Koinange EMK, Singh SP, Gepts P. Genetic control of the domestication syndrome in common-bean. Crop Sci. 1996;36:1037–45.
Article
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyons E, Pedersen B, Kane J, Alam M, Ming R, Tang H, et al. Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol. 2008;148:1772–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics. 2014;15:356.
Article
PubMed
PubMed Central
Google Scholar
Guo X, Castillo-Ramírez S, González V, Bustos P, Fernández-Vázquez JL, Santamaría RI, et al. Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts. BMC Genomics. 2007;8:228.
Article
PubMed
PubMed Central
Google Scholar
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet. 2007;81:559–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.
Article
CAS
Google Scholar
Alexa A, Rahnenfuhrer J. topGO: Enrichment Analysis for Gene Ontology. R package version 2.24.0. 2016.
Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibb S, Korbinian S. MALDIquant: A versatile R package for the analysis of mass spectrometry data. Bioinformatics. 2012;28:2270–1.
Article
CAS
PubMed
Google Scholar
Williams G. Data Mining with Rattle and R: The Art of Excavating Data for 1282 Knowledge Discovery. New York: Springer; 2011.
Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12:523–6.
Article
CAS
PubMed
PubMed Central
Google Scholar