Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M: A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 1995, 9: 573-586. 10.1101/gad.9.5.573.
Article
PubMed
CAS
Google Scholar
Shang WH, Hori T, Toyoda A, Kato J, Popendorf K, Sakakibara Y, Fujiyama A, Fukagawa T: Chickens possess centromeres with both extended tandem repeats and short non-tandem-repetitive sequences. Genome Res. 2010, 20: 1219-1228. 10.1101/gr.106245.110.
Article
PubMed
CAS
PubMed Central
Google Scholar
Talbert PB, Bryson TD, Henikoff S: Adaptive evolution of centromere proteins in plants and animals. J Biol. 2004, 3: 18-10.1186/jbiol11.
Article
PubMed
PubMed Central
Google Scholar
Henikoff S, Ahmad K, Malik HS: The centromere paradox: stable inheritance with rapidly evolving DNA. Science. 2001, 293: 1098-1102. 10.1126/science.1062939.
Article
PubMed
CAS
Google Scholar
Meraldi P, McAinsh AD, Rheinbay E, Sorger PK: Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol. 2006, 7: R23-10.1186/gb-2006-7-3-r23.
Article
PubMed
PubMed Central
Google Scholar
McAinsh AD, Tytell JD, Sorger PK: Structure, function, and regulation of budding yeast kinetochores. Annu Rev Cell Dev Biol. 2003, 19: 519-539. 10.1146/annurev.cellbio.19.111301.155607.
Article
PubMed
CAS
Google Scholar
Birchler JA, Gao Z, Han F: A tale of two centromeres--diversity of structure but conservation of function in plants and animals. Funct Integr Genomics. 2009, 9: 7-13. 10.1007/s10142-008-0104-9.
Article
PubMed
CAS
Google Scholar
Wang G, Zhang X, Jin W: An overview of plant centromeres. J Genet Genomics. 2009, 36: 529-537. 10.1016/S1673-8527(08)60144-7.
Article
PubMed
CAS
Google Scholar
Willard HF: Centromeres of mammalian chromosomes. Trends Genet. 1990, 6: 410-416.
Article
PubMed
CAS
Google Scholar
Waye JS, Durfy SJ, Pinkel D, Kenwrick S, Patterson M, Davies KE, Willard HF: Chromosome-specific alpha satellite DNA from human chromosome 1: hierarchical structure and genomic organization of a polymorphic domain spanning several hundred kilobase pairs of centromeric DNA. Genomics. 1987, 1: 43-51. 10.1016/0888-7543(87)90103-0.
Article
PubMed
CAS
Google Scholar
Rudd MK, Wray GA, Willard HF: The evolutionary dynamics of alpha-satellite. Genome Res. 2006, 16: 88-96.
Article
PubMed
CAS
PubMed Central
Google Scholar
Amor DJ, Choo KH: Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet. 2002, 71: 695-714. 10.1086/342730.
Article
PubMed
PubMed Central
Google Scholar
Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR: Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA. 2005, 102: 9842-9847. 10.1073/pnas.0504235102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lam AL, Boivin CD, Bonney CF, Rudd MK, Sullivan BA: Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci USA. 2006, 103: 4186-4191. 10.1073/pnas.0507947103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, Lear TL, Adelson DL, Bailey E, Bellone RR, Blocker H, Distl O, Edgar RC, Garber M, Leeb T, Mauceli E, MacLeod JN, Penedo MC, Raison JM, Sharpe T, Vogel J, Andersson L, Antczak DF, Biagi T, Binns MM, Chowdhary BP, Coleman SJ, Della Valle G, Fryc S, Guerin G, et al: Genome sequence, comparative analysis, and population genetics of the domestic horse. Science. 2009, 326: 865-867. 10.1126/science.1178158.
Article
PubMed
CAS
PubMed Central
Google Scholar
Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM, Yang SP, Wang Z, Chinwalla AT, Minx P, Mitreva M, Cook L, Delehaunty KD, Fronick C, Schmidt H, Fulton LA, Fulton RS, Nelson JO, Magrini V, Pohl C, Graves TA, Markovic C, Cree A, Dinh HH, Hume J, Kovar CL, Fowler GR, Lunter G, Meader S, Heger A, et al: Comparative and demographic analysis of orang-utan genomes. Nature. 2011, 469: 529-533. 10.1038/nature09687.
Article
PubMed
CAS
PubMed Central
Google Scholar
Marshall OJ, Chueh AC, Wong LH, Choo KH: Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet. 2008, 82: 261-282. 10.1016/j.ajhg.2007.11.009.
Article
PubMed
CAS
PubMed Central
Google Scholar
Neumann P, Navrátilová A, Schroeder-Reiter E, Koblížková A, Steinbauerová V, Chocholová E, Novák P, Wanner G, Macas J: Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet. 2012, 8: e1002777-10.1371/journal.pgen.1002777.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gong Z, Wu Y, Koblízková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novák P, Buell CR, Macas J, Jiang J: Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell. 2012, 24: 3559-3574. 10.1105/tpc.112.100511.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dernburg AF: Here, there, and everywhere: kinetochore function on holocentric chromosomes. J Cell Biol. 2001, 153: F33-F38. 10.1083/jcb.153.6.F33.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gassmann R, Rechtsteiner A, Yuen KW, Muroyama A, Egelhofer T, Gaydos L, Barron F, Maddox P, Essex A, Monen J, Ercan S, Lieb JD, Oegema K, Strome S, Desai A: An inverse relationship to germline transcription defines centromeric chromatin in C. elegans. Nature. 2012, 484: 534-537. 10.1038/nature10973.
Article
PubMed
CAS
PubMed Central
Google Scholar
Elder JF, Turner BJ: Concerted evolution at the population level: pupfish HindIII satellite DNA sequences. Proc Natl Acad Sci USA. 1994, 91: 994-998. 10.1073/pnas.91.3.994.
Article
PubMed
CAS
PubMed Central
Google Scholar
Palomeque T, Lorite P: Satellite DNA in insects: a review. Heredity (Edinb). 2008, 100: 564-573. 10.1038/hdy.2008.24.
Article
CAS
Google Scholar
Masumoto H, Nakano M, Ohzeki J: The role of CENP-B and alpha-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres. Chromosome Res. 2004, 12: 543-556.
Article
PubMed
CAS
Google Scholar
Bensasson D, Zarowiecki M, Burt A, Koufopanou V: Rapid evolution of yeast centromeres in the absence of drive. Genetics. 2008, 178: 2161-2167. 10.1534/genetics.107.083980.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bensasson D: Evidence for a high mutation rate at rapidly evolving yeast centromeres. BMC Evol Biol. 2011, 11: 211-10.1186/1471-2148-11-211.
Article
PubMed
PubMed Central
Google Scholar
Plohl M, Luchetti A, Mestrović N, Mantovani B: Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene. 2008, 409: 72-82. 10.1016/j.gene.2007.11.013.
Article
PubMed
CAS
Google Scholar
Gaillard C, Doly J, Cortadas J, Bernardi G: The primary structure of bovine satellite 1.715. Nucleic Acids Res. 1981, 9: 6069-6082. 10.1093/nar/9.22.6069.
Article
PubMed
CAS
PubMed Central
Google Scholar
Płucienniczak A, Skowroński J, Jaworski J: Nucleotide sequence of bovine 1.715 satellite DNA and its relation to other bovine satellite sequences. J Mol Biol. 1982, 158: 293-304. 10.1016/0022-2836(82)90434-X.
Article
PubMed
Google Scholar
Taparowsky EJ, Gerbi SA: Structure of 1.71 lb gm/cm(3) bovine satellite DNA: evolutionary relationship to satellite I. Nucleic Acids Res. 1982, 10: 5503-5515. 10.1093/nar/10.18.5503.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fishman L, Saunders A: Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science. 2008, 322: 1559-1562. 10.1126/science.1161406.
Article
PubMed
CAS
Google Scholar
BLASTn. [http://blast.ncbi.nlm.nih.gov]
Alkan C, Cardone MF, Catacchio CR, Antonacci F, O'Brien SJ, Ryder OA, Purgato S, Zoli M, Della Valle G, Eichler EE, Ventura M: Genome-wide characterization of centromeric satellites from multiple mammalian genomes. Genome Res. 2011, 21: 137-145. 10.1101/gr.111278.110.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, Pertea G, Van Tassell CP, Sonstegard TS, Marçais G, Roberts M, Subramanian P, Yorke JA, Salzberg SL: A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 2009, 10: R42-10.1186/gb-2009-10-4-r42.
Article
PubMed
PubMed Central
Google Scholar
Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, et al: The B73 maize genome: complexity, diversity, and dynamics. Science. 2009, 326: 1112-1115. 10.1126/science.1178534.
Article
PubMed
CAS
Google Scholar
Ananiev EV, Phillips RL, Rines HW: Complex structure of knobs and centromeric regions in maize chromosomes. Tsitol Genet. 2000, 34: 11-15.
PubMed
CAS
Google Scholar
Dawe RK, Bennetzen JL, Hake S: Maize Centromeres and Knobs (neocentromeres) Handbook of Maize. 2009, New York: Springer, 239-250.
Google Scholar
Chia JM, Song C, Bradbury P, Costich D, de Leon N, Doebley JC, Elshire RJ, Gaunt BS, Geller L, Glaubitz JC, Gore M, Guill KE, Holland J, Hufford MB, Lai J, Liu X, Lu Y, McCombie R, Nelson R, Poland J, Prasanna BM, Pyhäjärvi T, Rong T, Shekhon RS, Sun Q, Tenaillon M, Tian F, Wang J, Xu X, Zhang Z, Kaeppler S, Ross-Ibarra J, McMullen M, Buckler ES, Zhang G, Xu Y, Ware D: Capturing extant variation from a genome in flux: maize HapMap II. Nat Genet. 2012, 44: 803-807. 10.1038/ng.2313.
Article
PubMed
CAS
Google Scholar
Carone DM, Longo MS, Ferreri GC, Hall L, Harris M, Shook N, Bulazel KV, Carone BR, Obergfell C, O'Neill MJ, O'Neill RJ: A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma. 2009, 118: 113-125. 10.1007/s00412-008-0181-5.
Article
PubMed
CAS
Google Scholar
Hosouchi T, Kumekawa N, Tsuruoka H, Kotani H: Physical map-based sizes of the centromeric regions of Arabidopsis thaliana chromosomes 1, 2, and 3. DNA Res. 2002, 9: 117-121. 10.1093/dnares/9.4.117.
Article
PubMed
CAS
Google Scholar
Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J: Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA. 2005, 102: 11793-11798. 10.1073/pnas.0503863102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Horvath JE, Willard HF: Primate comparative genomics: lemur biology and evolution. Trends Genet. 2007, 23: 173-182. 10.1016/j.tig.2007.02.007.
Article
PubMed
CAS
Google Scholar
Lee HR, Hayden KE, Willard HF: Organization and molecular evolution of CENP-A--associated satellite DNA families in a basal primate genome. Genome Biol Evol. 2011, 3: 1136-1149. 10.1093/gbe/evr083.
Article
PubMed
PubMed Central
Google Scholar
Shelby RD, Vafa O, Sullivan KF: Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J Cell Biol. 1997, 136: 501-513. 10.1083/jcb.136.3.501.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gill N, Findley S, Walling JG, Hans C, Ma J, Doyle J, Stacey G, Jackson SA: Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol. 2009, 151: 1167-1174. 10.1104/pp.109.137935.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tek AL, Kashihara K, Murata M, Nagaki K: Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon. Chromosome Res. 2010, 18: 337-347. 10.1007/s10577-010-9119-x.
Article
PubMed
CAS
Google Scholar
Blomberg SP, Garland T, Ives AR: Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003, 57: 717-745.
Article
PubMed
Google Scholar
Melters DP, Paliulis L, Korf IF, Chan SW: Holocentric chromosomes: convergent evolution, meiotic adaptations and genomic analysis. Chromosome Research. 2012, 20: 579-593. 10.1007/s10577-012-9292-1.
Article
PubMed
CAS
Google Scholar
Warburton PE, Waye JS, Willard HF: Nonrandom localization of recombination events in human alpha satellite repeat unit variants: implications for higher-order structural characteristics within centromeric heterochromatin. Mol Cell Biol. 1993, 13: 6520-6529.
Article
PubMed
CAS
PubMed Central
Google Scholar
Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999, 27: 573-580. 10.1093/nar/27.2.573.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cellamare A, Catacchio CR, Alkan C, Giannuzzi G, Antonacci F, Cardone MF, Della Valle G, Malig M, Rocchi M, Eichler EE, Ventura M: New insights into centromere organization and evolution from the white-cheeked gibbon and marmoset. Mol Biol Evol. 2009, 26: 1889-1900. 10.1093/molbev/msp101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Smith GP: Evolution of repeated DNA sequences by unequal crossover. Science. 1976, 191: 528-535. 10.1126/science.1251186.
Article
PubMed
CAS
Google Scholar
Ma J, Jackson SA: Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res. 2006, 16: 251-259.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ma J, Bennetzen JL: Recombination, rearrangement, reshuffling, and divergence in a centromeric region of rice. Proc Natl Acad Sci USA. 2006, 103: 383-388. 10.1073/pnas.0509810102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hemleben V, Kovarik A, Torres-Ruiz RA, Volkov RA, Beridze T: Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. Systematics Biodiversity. 2007, 5: 277-289. 10.1017/S147720000700240X.
Article
Google Scholar
Schadt EE, Turner S, Kasarskis A: A window into third-generation sequencing. Hum Mol Genet. 2010, 19: R227-R240. 10.1093/hmg/ddq416.
Article
PubMed
CAS
Google Scholar
Warburton PE, Haaf T, Gosden J, Lawson D, Willard HF: Characterization of a chromosome-specific chimpanzee alpha satellite subset: evolutionary relationship to subsets on human chromosomes. Genomics. 1996, 33: 220-228. 10.1006/geno.1996.0187.
Article
PubMed
CAS
Google Scholar
Swaminathan K, Varala K, Hudson M: Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey. BMC Genomics. 2007, 8: 132-10.1186/1471-2164-8-132.
Article
PubMed
PubMed Central
Google Scholar
Hayden K, Willard H: Composition and organization of active centromere sequences in complex genomes. BMC Genomics. 2012, 13: 324-10.1186/1471-2164-13-324.
Article
PubMed
CAS
PubMed Central
Google Scholar
Navajas-Pérez R, Paterson AH: Patterns of tandem repetition in plant whole genome assemblies. Mol Genet Genomics. 2009, 281: 579-590. 10.1007/s00438-009-0433-y.
Article
PubMed
Google Scholar
Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J: Sequencing of a rice centromere uncovers active genes. Nat Genet. 2004, 36: 138-145. 10.1038/ng1289.
Article
PubMed
CAS
Google Scholar
Ventura M, Antonacci F, Cardone MF, Stanyon R, D'Addabbo P, Cellamare A, Sprague LJ, Eichler EE, Archidiacono N, Rocchi M: Evolutionary formation of new centromeres in macaque. Science. 2007, 316: 243-246. 10.1126/science.1140615.
Article
PubMed
CAS
Google Scholar
Bassett EA, Wood S, Salimian KJ, Ajith S, Foltz DR, Black BE: Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors. J Cell Biol. 2010, 190: 177-185. 10.1083/jcb.201001035.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pikaard C, Pontes O: Heterochromatin: condense or excise. Nat Cell Biol. 2007, 9: 19-20. 10.1038/ncb0107-19.
Article
PubMed
CAS
Google Scholar
Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK: Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell. 2002, 14: 2825-2836. 10.1105/tpc.006106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Houben A, Schroeder-Reiter E, Nagaki K, Nasuda S, Wanner G, Murata M, Endo TR: CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley. Chromosoma. 2007, 116: 275-283. 10.1007/s00412-007-0102-z.
Article
PubMed
CAS
Google Scholar
Tsukahara S, Kawabe A, Kobayashi A, Ito T, Aizu T, Shin-I T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T: Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. Genes Dev. 2012, 26: 705-713. 10.1101/gad.183871.111.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sullivan BA, Karpen GH: Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol. 2004, 11: 1076-1083. 10.1038/nsmb845.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang W, Lee H-R, Koo D-H, Jiang J: Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell. 2008, 20: 25-34. 10.1105/tpc.107.057083.
Article
PubMed
PubMed Central
Google Scholar
Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P, Kandels-Lewis S, Larionov V, Earnshaw WC, Masumoto H: Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev Cell. 2008, 14: 507-522. 10.1016/j.devcel.2008.02.001.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ohzeki JI, Bergmann JH, Kouprina N, Noskov VN, Nakano M, Kimura H, Earnshaw WC, Larionov V, Masumoto H: Breaking the HAC barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO J. 2012, 31: 2391-2402. 10.1038/emboj.2012.82.
Article
PubMed
CAS
PubMed Central
Google Scholar
Topp CN, Zhong CX, Dawe RK: Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA. 2004, 101: 15986-15991. 10.1073/pnas.0407154101.
Article
PubMed
CAS
PubMed Central
Google Scholar
O'Neill RJ, Carone DM: The role of ncRNA in centromeres: a lesson from marsupials. Prog Mol Subcell Biol. 2009, 48: 77-101. 10.1007/978-3-642-00182-6_4.
Article
PubMed
Google Scholar
Du Y, Topp CN, Dawe RK: DNA binding of centromere protein C (CENPC) is stabilized by single-stranded RNA. PLoS Genet. 2010, 6: e1000835-10.1371/journal.pgen.1000835.
Article
PubMed
PubMed Central
Google Scholar
Gent JI, Schneider KL, Topp CN, Rodriguez C, Presting GG, Dawe RK: Distinct influences of tandem repeats and retrotransposons on CENH3 nucleosome positioning. Epigenetics Chromatin. 2011, 4: 3-10.1186/1756-8935-4-3.
Article
PubMed
CAS
PubMed Central
Google Scholar
Han F, Gao Z, Birchler JA: Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell. 2009, 21: 1929-1939. 10.1105/tpc.109.066662.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sato H, Masuda F, Takayama Y, Takahashi K, Saitoh S: Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes. Curr Biol. 2012, 22: 658-667. 10.1016/j.cub.2012.02.062.
Article
PubMed
CAS
Google Scholar
Mackinnon RN, Campbell LJ: The role of dicentric chromosome formation and secondary centromere deletion in the evolution of myeloid malignancy. Genet Res Int. 2011, 2011: 643628-
PubMed
PubMed Central
Google Scholar
Malik HS, Henikoff S: Major evolutionary transitions in centromere complexity. Cell. 2009, 138: 1067-1082. 10.1016/j.cell.2009.08.036.
Article
PubMed
CAS
Google Scholar
Kawabe A, Charlesworth D: Patterns of DNA variation among three centromere satellite families in Arabidopsis halleri and A. lyrata. J Mol Evol. 2007, 64: 237-247. 10.1007/s00239-006-0097-8.
Article
PubMed
CAS
Google Scholar
Houseley J, Tollervey D: Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery. Nucleic Acids Res. 2011, 39: 8778-8791. 10.1093/nar/gkr589.
Article
PubMed
CAS
PubMed Central
Google Scholar
Shi J, Wolf SE, Burke JM, Presting GG, Ross-Ibarra J, Dawe RK: Widespread gene conversion in centromere cores. PLoS Biol. 2010, 8: e1000327-10.1371/journal.pbio.1000327.
Article
PubMed
PubMed Central
Google Scholar
Birchler JA, Presting GG: Retrotransposon insertion targeting: a mechanism for homogenization of centromere sequences on nonhomologous chromosomes. Genes Dev. 2012, 26: 638-640. 10.1101/gad.191049.112.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dover G: Molecular drive: a cohesive mode of species evolution. Nature. 1982, 299: 111-117. 10.1038/299111a0.
Article
PubMed
CAS
Google Scholar
Elde NC, Roach KC, Yao MC, Malik HS: Absence of positive selection on centromeric histones in Tetrahymena suggests unsuppressed centromere: drive in lineages lacking male meiosis. J Mol Evol. 2011, 72: 510-520. 10.1007/s00239-011-9449-0.
Article
PubMed
CAS
PubMed Central
Google Scholar
NCBI Trace Archive. [http://www.ncbi.nlm.nih.gov/Traces/home/]
DDBJ Sequence Read Archive. [http://trace.ddbj.nig.ac.jp/DRASearch/]
WU-BLAST. [http://blast.wustl.edu/]
PRICE. [http://derisilab.ucsf.edu/software/price/index.html]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
Article
PubMed
CAS
Google Scholar
Coyne JA, Orr HA: Patterns of speciation in Drosophila. Evolution. 1989, 362-381.
Google Scholar
Fitzpatrick BM: Molecular correlates of reproductive isolation. Evolution. 2002, 56: 191-198.
Article
PubMed
CAS
Google Scholar
Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, Feolo M, Fingerman IM, Geer LY, Helmberg W, Kapustin Y, Krasnov S, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Karsch-Mizrachi I, Ostell J, Panchenko A, Phan L, Pruitt KD, Schuler GD, et al: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2012, 40: D13-D25. 10.1093/nar/gkr1184.
Article
PubMed
CAS
PubMed Central
Google Scholar
Paradis E, Claude J, Strimmer K: APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics. 2004, 20: 289-290. 10.1093/bioinformatics/btg412.
Article
PubMed
CAS
Google Scholar
Hedges SB, Dudley J, Kumar S: TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics. 2006, 22: 2971-2972. 10.1093/bioinformatics/btl505.
Article
PubMed
CAS
Google Scholar
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W: GEIGER: investigating evolutionary radiations. Bioinformatics. 2008, 24: 129-131. 10.1093/bioinformatics/btm538.
Article
PubMed
CAS
Google Scholar
Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO: Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010, 26: 1463-1464. 10.1093/bioinformatics/btq166.
Article
PubMed
CAS
Google Scholar
10kTrees WebServer. [http://10ktrees.fas.harvard.edu/index.html]
Bouchenak-Khelladi Y, Verboom GA, Savolainen V, Hodkinson TR: Biogeography of the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time. Bot J Linn Soc. 2010, 162: 543-557. 10.1111/j.1095-8339.2010.01041.x.
Article
Google Scholar
Chen D, Ronald PC: A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep. 1999, 17: 53-57. 10.1023/A:1007585532036.
Article
CAS
Google Scholar
Zhang W, Friebe B, Gill BS, Jiang J: Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma. 2010, 119: 553-563. 10.1007/s00412-010-0278-5.
Article
PubMed
Google Scholar
Korf Lab DataSet website. [http://korflab.ucdavis.edu/Datasets/]