Kipreos ET, Lander LE, Wing JP, He WW, Hedgecock EM: cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell. 1996, 85: 829-839. 10.1016/S0092-8674(00)81267-2.
Article
PubMed
CAS
Google Scholar
Mathias N, Johnson SL, Winey M, Adams AE, Goetsch L, Pringle JR, Byers B, Goebl MG: Cdc53p acts in concert with Cdc4p and Cdc34p to control the G1-to-S-phase transition and identifies a conserved family of proteins. Mol Cell Biol. 1996, 16: 6634-6643.
Article
PubMed
CAS
PubMed Central
Google Scholar
The SMART's nrdb database. [http://smart.embl-heidelberg.de/smart/do_annotation.pl?DOMAIN=CULLIN]
Marin I: Diversification of the cullin family. BMC Evol Biol. 2009, 9: 267-10.1186/1471-2148-9-267.
Article
PubMed
PubMed Central
Google Scholar
Marin I, Lucas JI, Gradilla AC, Ferrus A: Parkin and relatives: the RBR family of ubiquitin ligases. Physiol Genomics. 2004, 17: 253-263. 10.1152/physiolgenomics.00226.2003.
Article
PubMed
CAS
Google Scholar
Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP: Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 2002, 416: 703-709. 10.1038/416703a.
Article
PubMed
CAS
Google Scholar
Petroski MD, Deshaies RJ: Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 2005, 6: 9-20.
Article
PubMed
CAS
Google Scholar
Li T, Chen X, Garbutt KC, Zhou P, Zheng N: Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell. 2006, 124: 105-117. 10.1016/j.cell.2005.10.033.
Article
PubMed
CAS
Google Scholar
Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N: Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature. 2006, 443: 590-593.
PubMed
CAS
Google Scholar
Skaar JR, Pagan JK, Pagano M: SnapShot: F box proteins I. Cell. 2009, 137: 1160-1160.e1. 10.1016/j.cell.2009.05.039.
Article
PubMed
CAS
Google Scholar
Pick E, Lau OS, Tsuge T, Menon S, Tong Y, Dohmae N, Plafker SM, Deng XW, Wei N: Mammalian DET1 regulates Cul4A activity and forms stable complexes with E2 ubiquitin-conjugating enzymes. Mol Cell Biol. 2007, 27: 4708-4719. 10.1128/MCB.02432-06.
Article
PubMed
CAS
PubMed Central
Google Scholar
Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Drapkin R, Kisselev AF, Tanaka K, Nakatani Y: The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell. 2003, 113: 357-367. 10.1016/S0092-8674(03)00316-7.
Article
PubMed
CAS
Google Scholar
Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M, Miller DJ, Walden H, Duda DM, Seyedin SN, Hoggard T, Harper JW, White KP, Schulman BA: Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell. 2009, 36: 39-50. 10.1016/j.molcel.2009.09.022.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kamura T, Maenaka K, Kotoshiba S, Matsumoto M, Kohda D, Conaway RC, Conaway JW, Nakayama KI: VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. Genes Dev. 2004, 18: 3055-3065. 10.1101/gad.1252404.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mahrour N, Redwine WB, Florens L, Swanson SK, Martin-Brown S, Bradford WD, Staehling-Hampton K, Washburn MP, Conaway RC, Conaway JW: Characterization of Cullin-box sequences that direct recruitment of Cul2-Rbx1 and Cul5-Rbx2 modules to Elongin BC-based ubiquitin ligases. J Biol Chem. 2008, 283: 8005-8013. 10.1074/jbc.M706987200.
Article
PubMed
CAS
Google Scholar
Stanley BJ, Ehrlich ES, Short L, Yu Y, Xiao Z, Yu XF, Xiong Y: Structural insight into the human immunodeficiency virus Vif SOCS box and its role in human E3 ubiquitin ligase assembly. J Virol. 2008, 82: 8656-8663. 10.1128/JVI.00767-08.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dias DC, Dolios G, Wang R, Pan ZQ: CUL7: A DOC domain-containing cullin selectively binds Skp1.Fbx29 to form an SCF-like complex. Proc Natl Acad Sci USA. 2002, 99: 16601-16606. 10.1073/pnas.252646399.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hotton SK, Callis J: Regulation of cullin RING ligases. Annu Rev Plant Biol. 2008, 59: 467-489. 10.1146/annurev.arplant.58.032806.104011.
Article
PubMed
CAS
Google Scholar
Koepp DM, Harper JW, Elledge SJ: How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell. 1999, 14: 431-434.
Article
Google Scholar
Guardavaccaro D, Pagano M: Stabilizers and destabilizers controlling cell cycle oscillators. Mol Cell. 2006, 22: 1-4. 10.1016/j.molcel.2006.03.017.
Article
PubMed
CAS
Google Scholar
Welcker M, Clurman BE: FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 2008, 8: 83-93. 10.1038/nrc2290.
Article
PubMed
CAS
Google Scholar
Zhong W, Feng H, Santiago FE, Kipreos ET: CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature. 2003, 423: 885-889. 10.1038/nature01747.
Article
PubMed
CAS
Google Scholar
Kapitsinou PP, Haase VH: The VHL tumor suppressor and HIF: insights from genetic studies in mice. Cell Death Differ. 2008, 15: 650-659. 10.1038/sj.cdd.4402313.
Article
PubMed
CAS
PubMed Central
Google Scholar
Huber C, Dias-Santagata D, Glaser A, O'Sullivan J, Brauner R, Wu K, Xu X, Pearce K, Wang R, Uzielli ML, Huber C, Dias-Santagata D, Glaser A, O'Sullivan J, Brauner R, Wu K, Xu X, Pearce K, Wang R, Uzielli ML, Dagoneau N, Chemaitilly W, Superti-Furga A, Dos Santos H, Mégarbané A, Morin G, Gillessen-Kaesbach G, Hennekam R, Van der Burgt I, Black GC, et al: Identification of mutations in CUL7 in 3-M syndrome. Nat Genet. 2005, 37: 1119-1124. 10.1038/ng1628.
Article
PubMed
CAS
Google Scholar
Huber C, Delezoide AL, Guimiot F, Baumann C, Malan V, Le Merrer M, Da Silva DB, Bonneau D, Chatelain P, Chu C, Clark R, Cox H, Edery P, Edouard T, Fano V, Gibson K, Gillessen-Kaesbach G, Giovannucci-Uzielli ML, Graul-Neumann LM, van Hagen JM, van Hest L, Horovitz D, Melki J, Partsch CJ, Plauchu H, Rajab A, Rossi M, Sillence D, Steichen-Gersdorf E, Stewart H, et al: A large-scale mutation search reveals genetic heterogeneity in 3M syndrome. Eur J Hum Genet. 2009, 17: 395-400. 10.1038/ejhg.2008.200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Maksimova N, Hara K, Miyashia A, Nikolaeva I, Shiga A, Nogovicina A, Sukhomyasova A, Argunov V, Shvedova A, Ikeuchi T, Nishizawa M, Kuwano R, Onodera O: Clinical, molecular and histopathological features of short stature syndrome with novel CUL7 mutation in Yakuts: new population isolate in Asia. J Med Genet. 2007, 44: 772-778. 10.1136/jmg.2007.051979.
Article
PubMed
CAS
PubMed Central
Google Scholar
Okabe H, Lee SH, Phuchareon J, Albertson DG, McCormick F, Tetsu O: A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation. PLoS One. 2006, 1: e128-10.1371/journal.pone.0000128.
Article
PubMed
PubMed Central
Google Scholar
Xu X, Sarikas A, Dias-Santagata DC, Dolios G, Lafontant PJ, Tsai SC, Zhu W, Nakajima H, Nakajima HO, Field LJ, Wang R, Pan ZQ: The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation. Mol Cell. 2008, 30: 403-414. 10.1016/j.molcel.2008.03.009.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sarikas A, Xu X, Field LJ, Pan ZQ: The cullin7 E3 ubiquitin ligase: a novel player in growth control. Cell Cycle. 2008, 7: 3154-3161. 10.4161/cc.7.20.6922.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tarpey PS, Raymond FL, O'Meara S, Edkins S, Teague J, Butler A, Dicks E, Stevens C, Tofts C, Avis T, Barthorpe S, Buck G, Cole J, Gray K, Halliday K, Harrison R, Hills K, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Varian J, West S, Widaa S, Mallya U, et al: Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor. Am J Hum Genet. 2007, 80: 345-352. 10.1086/511134.
Article
PubMed
CAS
PubMed Central
Google Scholar
Skaar JR, D'Angiolella V, Pagan JK, Pagano M: SnapShot: F Box Proteins II. Cell. 2009, 137: 1358-1358.e1
Article
PubMed
Google Scholar
Pintard L, Willems A, Peter M: Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J. 2004, 23: 1681-1687. 10.1038/sj.emboj.7600186.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jackson S, Xiong Y: CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci. 2009, 34: 562-570. 10.1016/j.tibs.2009.07.002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lee J, Zhou P: DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol Cell. 2007, 26: 775-780. 10.1016/j.molcel.2007.06.001.
Article
PubMed
CAS
Google Scholar
Pan ZQ, Kentsis A, Dias DC, Yamoah K, Wu K: Nedd8 on cullin: building an expressway to protein destruction. Oncogene. 2004, 23: 1985-1997. 10.1038/sj.onc.1207414.
Article
PubMed
CAS
Google Scholar
Yamoah K, Oashi T, Sarikas A, Gazdoiu S, Osman R, Pan ZQ: Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1's C-terminal tail. Proc Natl Acad Sci USA. 2008, 105: 12230-12235. 10.1073/pnas.0806155105.
Article
PubMed
CAS
PubMed Central
Google Scholar
Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA: Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell. 2008, 134: 995-1006. 10.1016/j.cell.2008.07.022.
Article
PubMed
CAS
PubMed Central
Google Scholar
Saha A, Deshaies RJ: Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol Cell. 2008, 32: 21-31. 10.1016/j.molcel.2008.08.021.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, Koonin EV, Deshaies RJ: Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science. 2002, 298: 608-611. 10.1126/science.1075901.
Article
PubMed
CAS
Google Scholar
Wei N, Chamovitz DA, Deng XW: Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell. 1994, 78: 117-124. 10.1016/0092-8674(94)90578-9.
Article
PubMed
CAS
Google Scholar
Read MA, Brownell JE, Gladysheva TB, Hottelet M, Parent LA, Coggins MB, Pierce JW, Podust VN, Luo RS, Chau V, Palombella VJ: Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha. Mol Cell Biol. 2000, 20: 2326-2333. 10.1128/MCB.20.7.2326-2333.2000.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu J, Furukawa M, Matsumoto T, Xiong Y: NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol Cell. 2002, 10: 1511-1518. 10.1016/S1097-2765(02)00783-9.
Article
PubMed
CAS
Google Scholar
Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH, Lykke-Andersen K, Wei N, Sun H, Kobayashi R, Zhang H: CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell. 2002, 10: 1519-1526. 10.1016/S1097-2765(02)00784-0.
Article
PubMed
CAS
Google Scholar
Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N: Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell. 2004, 119: 517-528. 10.1016/j.cell.2004.10.019.
Article
PubMed
CAS
Google Scholar
Bennett EJ, Rush J, Gygi SP, Harper JW: Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell. 2010, 143: 951-965. 10.1016/j.cell.2010.11.017.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yen HC, Xu Q, Chou DM, Zhao Z, Elledge SJ: Global protein stability profiling in mammalian cells. Science. 2008, 322: 918-923. 10.1126/science.1160489.
Article
PubMed
CAS
Google Scholar
Mizushima T, Hirao T, Yoshida Y, Lee SJ, Chiba T, Iwai K, Yamaguchi Y, Kato K, Tsukihara T, Tanaka K: Structural basis of sugar-recognizing ubiquitin ligase. Nat Struct Mol Biol. 2004, 11: 365-370. 10.1038/nsmb732.
Article
PubMed
CAS
Google Scholar
Hoeller D, Dikic I: Targeting the ubiquitin system in cancer therapy. Nature. 2009, 458: 438-444. 10.1038/nature07960.
Article
PubMed
CAS
Google Scholar
Navon A, Ciechanover A: The 26 S proteasome: from basic mechanisms to drug targeting. J Biol Chem. 2009, 284: 33713-33718. 10.1074/jbc.R109.018481.
Article
PubMed
CAS
PubMed Central
Google Scholar
Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S, Cullis CA, Doucette A, Garnsey JJ, Gaulin JL, Gershman RE, Lublinsky AR, McDonald A, Mizutani H, Narayanan U, Olhava EJ, Peluso S, Rezaei M, Sintchak MD, Talreja T, Thomas MP, Traore T, Vyskocil S, Weatherhead GS, Yu J, Zhang J, et al: An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009, 458: 732-736. 10.1038/nature07884.
Article
PubMed
CAS
Google Scholar
Aghajan M, Jonai N, Flick K, Fu F, Luo M, Cai X, Ouni I, Pierce N, Tang X, Lomenick B, Damoiseaux R, Hao R, Del Moral PM, Verma R, Li Y, Li C, Houk KN, Jung ME, Zheng N, Huang L, Deshaies RJ, Kaiser P, Huang J: Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase. Nat Biotechnol. 2010, 28: 738-742. 10.1038/nbt.1645.
Article
PubMed
CAS
Google Scholar
Orlicky S, Tang X, Neduva V, Elowe N, Brown ED, Sicheri F, Tyers M: An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase. Nat Biotechnol. 2010, 28: 733-737. 10.1038/nbt.1646.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CA: Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One. 2008, 3: e1487-10.1371/journal.pone.0001487.
Article
PubMed
PubMed Central
Google Scholar
Komander D: The emerging complexity of protein ubiquitination. Biochem Soc Trans. 2009, 37: 937-953. 10.1042/BST0370937.
Article
PubMed
CAS
Google Scholar
Chen ZJ, Sun LJ: Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell. 2009, 33: 275-286. 10.1016/j.molcel.2009.01.014.
Article
PubMed
CAS
Google Scholar
Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I: Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol. 2003, 5: 461-466. 10.1038/ncb983.
Article
PubMed
CAS
Google Scholar
Pickart CM: Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001, 70: 503-533. 10.1146/annurev.biochem.70.1.503.
Article
PubMed
CAS
Google Scholar
Ardley HC, Robinson PA: E3 ubiquitin ligases. Essays Biochem. 2005, 41: 15-30. 10.1042/EB0410015.
Article
PubMed
CAS
Google Scholar
Entrez Gene. [http://www.ncbi.nlm.nih.gov/gene]
Schulman BA, Carrano AC, Jeffrey PD, Bowen Z, Kinnucan ER, Finnin MS, Elledge SJ, Harper JW, Pagano M, Pavletich NP: Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature. 2000, 408: 381-386. 10.1038/35042620.
Article
PubMed
CAS
Google Scholar
Stebbins CE, Kaelin WG, Pavletich NP: Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science. 1999, 284: 455-461. 10.1126/science.284.5413.455.
Article
PubMed
CAS
Google Scholar
Pintard L, Willis JH, Willems A, Johnson JL, Srayko M, Kurz T, Glaser S, Mains PE, Tyers M, Bowerman B, Peter M: The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature. 2003, 425: 311-316. 10.1038/nature01959.
Article
PubMed
CAS
Google Scholar
Bullock AN, Debreczeni JE, Edwards AM, Sundstrom M, Knapp S: Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase. Proc Natl Acad Sci USA. 2006, 103: 7637-7642. 10.1073/pnas.0601638103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yu Y, Xiao Z, Ehrlich ES, Yu X, Yu XF: Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. Genes Dev. 2004, 18: 2867-2872. 10.1101/gad.1250204.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kaustov L, Lukin J, Lemak A, Duan S, Ho M, Doherty R, Penn LZ, Arrowsmith CH: The conserved CPH domains of Cul7 and PARC are protein-protein interaction modules that bind the tetramerization domain of p53. J Biol Chem. 2007, 282: 11300-11307. 10.1074/jbc.M611297200.
Article
PubMed
CAS
Google Scholar
Dealy MJ, Nguyen KV, Lo J, Gstaiger M, Krek W, Elson D, Arbeit J, Kipreos ET, Johnson RS: Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E. Nat Genet. 1999, 23: 245-248. 10.1038/13886.
Article
PubMed
CAS
Google Scholar
Wang Y, Penfold S, Tang X, Hattori N, Riley P, Harper JW, Cross JC, Tyers M: Deletion of the Cul1 gene in mice causes arrest in early embryogenesis and accumulation of cyclin E. Curr Biol. 1999, 9: 1191-1194. 10.1016/S0960-9822(00)80024-X.
Article
PubMed
CAS
Google Scholar
Gao MX, Liao EH, Yu B, Wang Y, Zhen M, Derry WB: The SCF FSN-1 ubiquitin ligase controls germline apoptosis through CEP-1/p53 in C. elegans. Cell Death Differ. 2008, 15: 1054-1062. 10.1038/cdd.2008.30.
Article
PubMed
CAS
Google Scholar
Killian DJ, Harvey E, Johnson P, Otori M, Mitani S, Xue D: SKR-1, a homolog of Skp1 and a member of the SCF(SEL-10) complex, regulates sex-determination and LIN-12/Notch signaling in C. elegans. Dev Biol. 2008, 322: 322-331. 10.1016/j.ydbio.2008.07.035.
Article
PubMed
CAS
PubMed Central
Google Scholar
Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, Elledge SJ: Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science. 2001, 294: 173-177. 10.1126/science.1065203.
Article
PubMed
CAS
Google Scholar
Moberg KH, Bell DW, Wahrer DC, Haber DA, Hariharan IK: Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature. 2001, 413: 311-316. 10.1038/35095068.
Article
PubMed
CAS
Google Scholar
Wing JP, Schreader BA, Yokokura T, Wang Y, Andrews PS, Huseinovic N, Dong CK, Ogdahl JL, Schwartz LM, White K, Nambu JR: Drosophila Morgue is an F box/ubiquitin conjugase domain protein important for grim-reaper mediated apoptosis. Nat Cell Biol. 2002, 4: 451-456. 10.1038/ncb800.
Article
PubMed
CAS
Google Scholar
Ou CY, Lin YF, Chen YJ, Chien CT: Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development. Genes Dev. 2002, 16: 2403-2414. 10.1101/gad.1011402.
Article
PubMed
CAS
PubMed Central
Google Scholar
Feng H, Zhong W, Punkosdy G, Gu S, Zhou L, Seabolt EK, Kipreos ET: CUL-2 is required for the G1-to-S-phase transition and mitotic chromosome condensation in Caenorhabditis elegans. Nat Cell Biol. 1999, 1: 486-492. 10.1038/70272.
Article
PubMed
CAS
Google Scholar
Sasagawa Y, Kikuchi K, Dazai K, Higashitani A: Caenorhabditis elegans Elongin BC complex is essential for cell proliferation and chromosome condensation and segregation during mitosis and meiotic division II. Chromosome Res. 2005, 13: 357-375. 10.1007/s10577-005-2687-5.
Article
PubMed
CAS
Google Scholar
DeRenzo C, Reese KJ, Seydoux G: Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation. Nature. 2003, 424: 685-689. 10.1038/nature01887.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu J, Vasudevan S, Kipreos ET: CUL-2 and ZYG-11 promote meiotic anaphase II and the proper placement of the anterior-posterior axis in C. elegans. Development. 2004, 131: 3513-3525. 10.1242/dev.01245.
Article
PubMed
CAS
Google Scholar
Sonneville R, Gonczy P: Zyg-11 and cul-2 regulate progression through meiosis II and polarity establishment in C. elegans. Development. 2004, 131: 3527-3543. 10.1242/dev.01244.
Article
PubMed
CAS
Google Scholar
Vasudevan S, Starostina NG, Kipreos ET: The Caenorhabditis elegans cell-cycle regulator ZYG-11 defines a conserved family of CUL-2 complex components. EMBO Rep. 2007, 8: 279-286. 10.1038/sj.embor.7400895.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sasagawa Y, Sato S, Ogura T, Higashitani A: C. elegans RBX-2-CUL-5- and RBX-1-CUL-2-based complexes are redundant for oogenesis and activation of the MAP kinase MPK-1. FEBS Lett. 2007, 581: 145-150. 10.1016/j.febslet.2006.12.009.
Article
PubMed
CAS
Google Scholar
Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ: C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001, 107: 43-54. 10.1016/S0092-8674(01)00507-4.
Article
PubMed
CAS
Google Scholar
Mehta R, Steinkraus KA, Sutphin GL, Ramos FJ, Shamieh LS, Huh A, Davis C, Chandler-Brown D, Kaeberlein M: Proteasomal regulation of the hypoxic response modulates aging in C. elegans. Science. 2009, 324: 1196-1198. 10.1126/science.1173507.
Article
PubMed
CAS
PubMed Central
Google Scholar
Singer JD, Gurian-West M, Clurman B, Roberts JM: Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev. 1999, 13: 2375-2387. 10.1101/gad.13.18.2375.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pintard L, Kurz T, Glaser S, Willis JH, Peter M, Bowerman B: Neddylation and deneddylation of CUL-3 is required to target MEI-1/Katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr Biol. 2003, 13: 911-921. 10.1016/S0960-9822(03)00336-1.
Article
PubMed
CAS
Google Scholar
Luke-Glaser S, Pintard L, Tyers M, Peter M: The AAA-ATPase FIGL-1 controls mitotic progression, and its levels are regulated by the CUL-3MEL-26 E3 ligase in the C. elegans germ line. J Cell Sci. 2007, 120: 3179-3187. 10.1242/jcs.015883.
Article
PubMed
CAS
Google Scholar
Johnson JL, Lu C, Raharjo E, McNally K, McNally FJ, Mains PE: Levels of the ubiquitin ligase substrate adaptor MEL-26 are inversely correlated with MEI-1/katanin microtubule-severing activity during both meiosis and mitosis. Dev Biol. 2009, 330: 349-357. 10.1016/j.ydbio.2009.04.004.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mistry H, Wilson BA, Roberts IJ, O'Kane CJ, Skeath JB: Cullin-3 regulates pattern formation, external sensory organ development and cell survival during Drosophila development. Mech Dev. 2004, 121: 1495-1507. 10.1016/j.mod.2004.07.007.
Article
PubMed
CAS
Google Scholar
Zhu S, Perez R, Pan M, Lee T: Requirement of Cul3 for axonal arborization and dendritic elaboration in Drosophila mushroom body neurons. J Neurosci. 2005, 25: 4189-4197. 10.1523/JNEUROSCI.0149-05.2005.
Article
PubMed
CAS
Google Scholar
Zhang Q, Zhang L, Wang B, Ou CY, Chien CT, Jiang J: A hedgehog-induced BTB protein modulates hedgehog signaling by degrading Ci/Gli transcription factor. Dev Cell. 2006, 10: 719-729. 10.1016/j.devcel.2006.05.004.
Article
PubMed
CAS
Google Scholar
Ou CY, Wang CH, Jiang J, Chien CT: Suppression of Hedgehog signaling by Cul3 ligases in proliferation control of retinal precursors. Dev Biol. 2007, 308: 106-119. 10.1016/j.ydbio.2007.05.008.
Article
PubMed
CAS
Google Scholar
Chen Y, Yang Z, Meng M, Zhao Y, Dong N, Yan H, Liu L, Ding M, Peng HB, Shao F: Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell. 2009, 35: 841-855. 10.1016/j.molcel.2009.09.004.
Article
PubMed
CAS
Google Scholar
Hudson AM, Cooley L: Drosophila Kelch functions with Cullin-3 to organize the ring canal actin cytoskeleton. J Cell Biol. 2010, 188: 29-37.
Article
PubMed
CAS
PubMed Central
Google Scholar
Liu L, Lee S, Zhang J, Peters SB, Hannah J, Zhang Y, Yin Y, Koff A, Ma L, Zhou P: CUL4A abrogation augments DNA damage response and protection against skin carcinogenesis. Mol Cell. 2009, 34: 451-460. 10.1016/j.molcel.2009.04.020.
Article
PubMed
CAS
PubMed Central
Google Scholar
Higa LA, Yang X, Zheng J, Banks D, Wu M, Ghosh P, Sun H, Zhang H: Involvement of CUL4 ubiquitin E3 ligases in regulating CDK inhibitors Dacapo/p27Kip1 and cyclin E degradation. Cell Cycle. 2006, 5: 71-77. 10.4161/cc.5.1.2266.
Article
PubMed
CAS
Google Scholar
Higa LA, Banks D, Wu M, Kobayashi R, Sun H, Zhang H: L2DTL/CDT2 interacts with the CUL4/DDB1 complex and PCNA and regulates CDT1 proteolysis in response to DNA damage. Cell Cycle. 2006, 5: 1675-1680. 10.4161/cc.5.15.3149.
Article
PubMed
CAS
Google Scholar
Ayyub C, Sen A, Gonsalves F, Badrinath K, Bhandari P, Shashidhara LS, Krishna S, Rodrigues V: Cullin-5 plays multiple roles in cell fate specification and synapse formation during Drosophila development. Dev Dyn. 2005, 232: 865-875. 10.1002/dvdy.20322.
Article
PubMed
CAS
Google Scholar
Kugler JM, Lem C, Lasko P: Reduced cul-5 activity causes aberrant follicular morphogenesis and germ cell loss in Drosophila oogenesis. PLoS One. 2010, 5: e9048-
Article
PubMed
PubMed Central
Google Scholar
Arai T, Kasper JS, Skaar JR, Ali SH, Takahashi C, DeCaprio JA: Targeted disruption of p185/Cul7 gene results in abnormal vascular morphogenesis. Proc Natl Acad Sci USA. 2003, 100: 9855-9860. 10.1073/pnas.1733908100.
Article
PubMed
CAS
PubMed Central
Google Scholar
Skaar JR, Arai T, DeCaprio JA: Dimerization of CUL7 and PARC is not required for all CUL7 functions and mouse development. Mol Cell Biol. 2005, 25: 5579-5589. 10.1128/MCB.25.13.5579-5589.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Comments
View archived comments (1)