Skip to main content
Fig. 5 | Genome Biology

Fig. 5

From: Transcriptome analysis in calorie-restricted rats implicates epigenetic and post-translational mechanisms in neuroprotection and aging

Fig. 5

Overlap of longevity genes identified in the rat cerebral cortex with the longevity associated networks in mouse, Drosophila and C. elegans. The 28 longevity genes identified in rats in this study were found to be longevity-associated genes (LAGs) or partners of LAGs in the longevity networks for mouse, Drosophila and C. elegans (overlap significantly higher than expected by chance; p = 8.37E − 03, Fisher’s exact test). LAGs are genes which result in noticeable changes in the ageing phenotype and/or lifespan. These are identified experimentally through knockout, mutation, overexpression or RNA interference [76]. Longevity networks (previously described in detail [79]) are protein–protein interaction networks, include a core of LAGs, depicted in green in the figure, and their first order protein-interacting partners, shown in light green. The size of the network for each species is thus dependent on the protein–protein interaction data, but also on the number of LAGs available from the literature. All overlaps are higher than expected by chance (though this is not always statistically significant), with the overlap being significantly higher for worm LAGs, network partners of fly LAGs and network partners of mouse LAGs. Fisher’s exact test (one-tailed) p values for each of the overlaps are as follows: worm LAG p value = 6.11E − 05, fly LAG p value = 0.55, mouse LAG p value = 0.35, p value for LAG partners in worm longevity network = 0.09, p value for LAG partners in fly longevity network 0.027, p value for LAG partners in mouse longevity network = 0.034

Back to article page