Skip to main content
Fig. 2 | Genome Biology

Fig. 2

From: Scalable microfluidics for single-cell RNA printing and sequencing

Fig. 2

Schematic and fluorescence imaging data for single-cell RNA capture on beads. a For mRNA capture on polymer beads, the microwell array is fabricated in a thin PDMS layer on top of a glass slide or coverslip with a microfluidic flow channel above. Cells are first deposited in the microwell array by gravity followed by beads (while circles) covalently functionalized with oligo(dT) primers (orange circular outlines). A lysis buffer is introduced followed by rapid displacement of fluid in the channel with oil, which conformally seals the array. Single-cell lysates (green) become trapped in individual microwells and mRNA hybridizes to the oligo(dT) on the beads (red circular outlines). b Close-up images of single-cell RNA capture on beads. The top panel is a bright field/fluorescence overlay of a microwell array in which four microwells contain a bead, but only one contains both a bead and a cell (fluorescently labeled with live stain). The middle panel is a fluorescence image of the array after RNA capture, reverse transcription, and staining with SYTOX Orange. Note that the bead associated with a cell is significantly brighter than the other beads. The bottom panel is a fluorescence image of beads in an array from a negative control experiment involving no RNA or cells, showing that the beads have a certain level of background fluorescence in the presence of stain, which explains the majority of the background signal observed in the beads with no cell in the middle panel

Back to article page